By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-...By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene.The dynamical simulation is performed by adopting the non-adiabatic evolution approach.The results show that under the effect of moderate electric field,when the strength of electron-electron interaction is weak,the singlet exciton is stable but its polarization presents obvious oscillation.With the enhancement of interaction,it is dissociated into polaron pairs,the spin-flip of which can be observed through modulating the interaction strength.For the triplet exciton,the strong electron-electron interaction restrains its normal polarization,but it is still stable.In the case of biexciton,the strong electron-electron interaction not only dissociate it,but also flip its charge distribution.The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.展开更多
The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption...The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.展开更多
A new complex, [Ni2(L)4(H2O)8](1, L1 = 4-(1H-imidazol-4-yl)benzoic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. C...A new complex, [Ni2(L)4(H2O)8](1, L1 = 4-(1H-imidazol-4-yl)benzoic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group P21/c with α = 22.281(2), b = 7.3959(7), c = 24.978(3) ?, β = 90.876(10), V = 4115.6(7) ?3, Z = 8, C20H22N4O8Ni, Mr = 505.13, Dc = 1.630 g/cm3, μ = 1.001 mm-1, S = 1.080, F(000) = 2096, the final R = 0.452 and wR = 0.1152 for 9380 observed reflections (I 〉 2σ(I)). The result of X-ray diffraction analysis revealed three different kinds of Ni(II) centre mononuclear molecules in the asymmetric unit. The independent mononuclear units are bridged to form a three-dimensional supramolecular polymer by extensive hydrogen bonds and C–H… non-covalent bonding interactions.展开更多
Taking into consideration the gas compressibility and chemical reaction reversibility, a model was developed to study the interactions between gas flow and chemical reaction in porous media and resolved by the finite ...Taking into consideration the gas compressibility and chemical reaction reversibility, a model was developed to study the interactions between gas flow and chemical reaction in porous media and resolved by the finite volume method on the basis of the gas-solid reaction aA(g)+bB(s)cC(g)+dD(s).The numerical analysis shows that the equilibrium constant is an important factor influencing the process of gas-solid reaction. The stoichiometric coefficients, molar masses of reactant gas, product gas and inert gas are the main factors influencing the density of gas mixture. The equilibrium constant influences the gas flow in porous media obviously when the stoichiometric coefficients satisfy a/c≠1.展开更多
The non-covalent interaction between apigenin (API) and different functional monomers (α-methylacrylic acid (MAA), acrylamide (AM), 2-vinylpyridine (2-Vpy) and combined functional monomers (AM/2-Vpy)) was determined ...The non-covalent interaction between apigenin (API) and different functional monomers (α-methylacrylic acid (MAA), acrylamide (AM), 2-vinylpyridine (2-Vpy) and combined functional monomers (AM/2-Vpy)) was determined by UV spectrometry, and a series of apigenin molecularly imprinted polymers (API-MIPs) was synthesized with different functional monomers through molecular imprinting technology. The relationship between the non-covalent interaction of template/functional monomer and absorption of MIPs also was studied. The results showed that the order of the strength of the non-covalent interaction between API and different functional monomers in tetrahydrofuran (THF) is as follows: 2-Vpy> AM/2-Vpy>AM>MAA, which is positive correlation to the absorption capability of corresponding MIPs, and 2-Vpy is the optimum functional monomer among the used monomer for preparing API- MIPs.展开更多
Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinet...Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability.展开更多
Plant phenolic acids are good sources of antioxidants and sinapic acid(SA)is one of them that can be applied in protein-based food system.However,little research is available regarding interactions between almond prot...Plant phenolic acids are good sources of antioxidants and sinapic acid(SA)is one of them that can be applied in protein-based food system.However,little research is available regarding interactions between almond protein(AP)and SA.In this study,structure-affinity interaction between SA and AP,structure and antioxidant activity of proteins were investigated.Different mathematical models showed that Ka of binding SA and AP were 3.27×10^4 L/mol and 3.08×10^4 L/mol.CD(Circular dichroism)spectroscopy and FT-IR(Fourier transform infrared)spectroscopy showed that the amount of random coil andα-helix decreased whileβ-sheet increased in AP-SA complex.In combination,the interaction model of AP-SA complex was static quenching and attributed to hydrophobic interaction.Further,AP-SA complex exerted better DPPH radical scavenging ability(36.97±0.78%),ABTS+radical scavenging ability(47.26±0.45%),and higher ORAC value(2.41±0.23 M trolox/g)compared to AP.In the further,SA can be applied in protein matrix to improve film stability,gel strength and restraining fat oxidation degradation.展开更多
Vectored non-covalent interactions—mainly hydrogen bonding and aromatic interactions—extensively contribute to(bio)-organic self-assembling processes and significantly impact the physicochemical properties of the as...Vectored non-covalent interactions—mainly hydrogen bonding and aromatic interactions—extensively contribute to(bio)-organic self-assembling processes and significantly impact the physicochemical properties of the associated superstructures.However,vectored non-covalent interaction-driven assembly occursmainly along one-dimensional(1D)or three-dimensional(3D)directions,and a two-dimensional(2D)orientation,especially that of multilayered,graphene-like assembly,has been reported less.In this present research,by introducing amino,hydroxyl,and phenyl moieties to the triazine skeleton,supramolecular layered assembly is achieved by vectored non-covalent interactions.The planar hydrogen bonding network results in high stability,with a thermal sustainability of up to about 330°C and a Young’s modulus of up to about 40 GPa.Upon introducing wrinkles by biased hydrogen bonding or aromatic interactions to disturb the planar organization,the stability attenuates.However,the intertwined aromatic interactions prompt a red edge excitation shift effect inside the assemblies,inducing broad-spectrum fluorescence covering nearly the entire visible light region(400–650 nm).We show that bionic,superhydrophobic,pillar-like arrays with contact angles of up to about 170°can be engineered by aromatic interactions using a physical vapor deposition approach,which cannot be realized through hydrogen bonding.Our findings show the feasibility of 2D assembly with engineerable properties by modulating vectored non-covalent interactions.展开更多
The interaction between electrode materials and charge carriers is one of the central issues dominating underlying energy storage mechanisms.To address the notoriously significant volume changes accompanying intercala...The interaction between electrode materials and charge carriers is one of the central issues dominating underlying energy storage mechanisms.To address the notoriously significant volume changes accompanying intercalation or formation of alloy/compounds,we aim to introduce and utilize a weak,reversible Fe-N interaction during the(de)intercalation of ammonium ions(NH_(4)^(+))within iron(Ⅲ)hexacyanoferrate(FeHCF),inspired by manipulating the electrostatic adsorption between N and Fe in the early stages of ammonia synthesis(Bosch-Harber Process,Chemical Engineering)and steel nitriding processes(Metal Industry).Such strategy of switching well-balanced Fe-N interaction is confirmed in between the nitrogen of ammonium ions and highspin Fe in FeHCF,as observed by using X-ray absorption spectroscopy.The resulting material provided an extremely stable energy storage(58 mAh g^(-1) after 10000 cycles at current density of 1 A g^(-1))as well as high-rate performance(23.6 mAh g^(-1) at current density of 10 A g^(-1)).展开更多
An in-depth analysis on the cooperativity of intermolecular interactions including hydrogen bonding andπ-π stacking in 1,3,5-triamino-2,4,6-trinitrobenzene(TATB) crystal was studied. Two quantities, cooperativity ra...An in-depth analysis on the cooperativity of intermolecular interactions including hydrogen bonding andπ-π stacking in 1,3,5-triamino-2,4,6-trinitrobenzene(TATB) crystal was studied. Two quantities, cooperativity rate and energy, were defined to evaluate the nature and strength of cooperativity in a series of clusters diverging from 1D to 3D prototypes. The origin and mechanism of the cooperative effect were settled to demonstrate that the nature of cooperativity is determined by whether the non-covalent interactions compete or promote with each other, which is manifested by the changing trend of electron transfer. There exists obvious cooperative effect in intra-layer and inter-layer structures as they own the equivalent non-covalent interactions, while anti-cooperative effect is also observed if two interactions correlate with each other. On the whole, in the process of crystal formation, the apparent cooperativity is the check and balance of the two effects, which is capable to support a global interaction among all of molecules and contribute to the stabilization of system. Based on the results, one may get a new insight to understand the relationship between non-covalent interactions and low impact sensitivity.展开更多
A rapid, fast and precise method has been developed and validated for the simultaneous determination of amlodipine with H1-receptor antagonists (cetirizine, fexofenadine, and buclizine) from dosage forms. The chromato...A rapid, fast and precise method has been developed and validated for the simultaneous determination of amlodipine with H1-receptor antagonists (cetirizine, fexofenadine, and buclizine) from dosage forms. The chromatography was performed on a Purospher? Star, C18 (5 mm, 250 × 4.6 mm) column using acetonitrile: buffer (0.01 mM) (40:60, v/v, pH adjusted to 3.0), as a mobile phase. The mobile phase was pumped at a flow rate of 1.0 mL·min-1 and UV detection was performed at 240 nm. The method was validated for linearity, accuracy, precision and specificity. The method was applied to study the interaction between amlodipine and H1-receptor antagonists. These interactions were carried out in simulated gastric juice (pH 1), simulated full stomach (pH 4), blood pH (pH 7.4) and simulating GI (pH 9). The interacting drugs were heated at 37℃ with intermit-tent shaking and the samples were withdrawn every thirty minutes for three hours and drug contents were analyzed by RP-HPLC techniques. In most cases the in vitro availability of amlodipine was decreased. It was observed that the change in in vitro availability was pH dependent.展开更多
The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), ...The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Interaction domains derived from strong exchange coupling interactions between hard and soft magnetic grains were imaged using magnetic force microscopy (MFM). Maximum remanence, intrinsic coercivity, and maximum energy product values were obtained in the ribbons annealed at 700℃ for 15 min, which were composed of Pr2(Fe, Co)14B, α-(Fe, Co), and slight Pr2(Fe, CO)17 phases. Although Jr, Hci, and (Bn)max decreased gradually with further increase of annealing time, it is emphasized that comparatively high Jr and Hci and (BH)max were obtained in a wide annealing time period of 15 to 360 min. The shape of initial magnetization curves and hysteresis loops change as a function of annealing time, indicating different magnetization reversal routes, which can be fully explained by the corresponding microstructure.展开更多
Soybean root and stem rot caused by Phytophthora sojae is a destructive disease worldwide. Using genetic resistance is an important and major component in the integrated pest management of this disease. To understand ...Soybean root and stem rot caused by Phytophthora sojae is a destructive disease worldwide. Using genetic resistance is an important and major component in the integrated pest management of this disease. To understand molecular mechanisms of root and stem rot resistance in soybeans, the gene and protein expression in hypocotyls and stems of variety Suinong 10 carrying resistance genes Rps1a and Rps2 was investigated by using mRNA differential display reverse transcription PCR and two-dimensional electrophoresis at 0, 0.5, 1, 2, and 4 h after inoculation with P. sojae race 1. The results of the comparison of gene and protein expression showed that at least eight differential fragments at the transcriptional level were related to metabolic pathway, phytoalexin, and signal transduction in defense responses. Sequence analyses indicated that these fragments represented cinnamic acid 4-hydroxylase gene, ATP b gene coding ATP synthase b subunit and ubiquitin-conjugating enzyme gene which upregulated at 0.5 h post inoculation, blue copper protein gene and UDP-N-acetyl-a-D-galactosamine gene which upregulated at 2 h post inoculation, TGA-type basic leucine zipper protein TGA1.1 gene, cyclophilin gene, and 14-3-3 protein gene which upregulated at 4 h post inoculation. Three resistance-related proteins, a-subunit and b-subunit of ATP synthase, and cytochrome P450-like protein, were upregulated at 2 h post inoculation. The results suggested that resistance-related multiple proteins and genes were expressed in the recognition between soybean and P. sojae during zoospore germination, penetration and mycelium growth of P. sojae in soybean.展开更多
Recent years have witnessed the fabrication of various non-covalent interaction-based molecular electronic devices.In the noncovalent interaction-based molecular devices,the strength of the interfacial coupling betwee...Recent years have witnessed the fabrication of various non-covalent interaction-based molecular electronic devices.In the noncovalent interaction-based molecular devices,the strength of the interfacial coupling between molecule and electrode is weakened compared to that of the covalent interaction-based molecular devices,which provides wide applications in fabricating versatile molecular devices.In this review,we start with the methods capable of fabricating graphene-based nanogaps,and the following routes to construct non-covalent interaction-based molecular junctions with graphene electrodes.Then we give an introduction to the reported non-covalent interaction-based molecular devices with graphene electrodes equipped with different electrical functions.Moreover,we summarize the recent progress in the design and fabrication of new-type molecular devices based on graphene and graphene-like two-dimensional(2D)materials.The review ends with a prospect on the challenges and opportunities of non-covalent interaction-based molecular electronics in the near future.展开更多
Searching for insensitive melt-castable energetic materials is still facing great challenges.In this work,we developed a promising strategy that is regulating the ratio of non-covalent interaction by fluorine atoms to...Searching for insensitive melt-castable energetic materials is still facing great challenges.In this work,we developed a promising strategy that is regulating the ratio of non-covalent interaction by fluorine atoms to regulate the melting point to develop new melt-castable energetic materials.Using this method,a highly sym-metric 1,2-difluoro-4,5-dinitrobenzene(DFDNB)was synthesized in one step and fully characterized.DFDNB has a desirable melting point(83.2℃),high decomposition temperature(>400℃),acceptable detonation properties(6786 m s^(-1),21.5 GPa)but superior safety performance(>40 J,>360 N),and excellent chemical compatibility with 1,3,5-trinitro-1,3,5-triazine(RDX)that make it a promising insensitive melt-castable energetic material.A detailed study based on crystal stacking,electrostatic potential,and intermolecular weak interactions in DFDNB and its isomers or analogs demonstrates that non-covalent interactions including the C-F…H,N-O…H hydrogen bonding,and C-F…O halogen-like bonding play an important role in regulating the melting point.展开更多
Non-covalent interactions are of significance in supramolecular chemistry and biochemistry,while synthetic procedures driven by these weak interactions remain challenging and rare.Inspired by the lone pair-π interact...Non-covalent interactions are of significance in supramolecular chemistry and biochemistry,while synthetic procedures driven by these weak interactions remain challenging and rare.Inspired by the lone pair-π interaction presence in the Z-DNA structure,a light-induced regioselective sulfonation of ethers taking advantage of the lone pair-π interaction between the oxygen of ethers and sulfonyl chlorides has been disclosed.Moreover,this strategy is also applicable to the sulfonation of aniline derivatives.Features of the methods include readily accessible starting materials,high atom-economy,green and photocatalyst-free conditions and broad functional group tolerance.Mechanism studies suggest that the lone pair-πinteraction plays an important role to initiate the transformation.展开更多
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020MA070).
文摘By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene.The dynamical simulation is performed by adopting the non-adiabatic evolution approach.The results show that under the effect of moderate electric field,when the strength of electron-electron interaction is weak,the singlet exciton is stable but its polarization presents obvious oscillation.With the enhancement of interaction,it is dissociated into polaron pairs,the spin-flip of which can be observed through modulating the interaction strength.For the triplet exciton,the strong electron-electron interaction restrains its normal polarization,but it is still stable.In the case of biexciton,the strong electron-electron interaction not only dissociate it,but also flip its charge distribution.The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.
基金financially supported by the Outstanding Youth Scientific Research Project for Colleges and Universities of Anhui Province of China (2022AH020054)the Anhui Provincial Natural Science Foundation (2208085Y06)+2 种基金the National Natural Science Foundation of China (Nos.21975001 and U2002213)the Support Program of Excellent Young Talents in Anhui Provincial Colleges and Universities (gxyq ZD2022034)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University (2019FY003025)。
文摘The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.
基金supported by the National Natural Science Foundation of China(Nos.21171040 and 21302019)
文摘A new complex, [Ni2(L)4(H2O)8](1, L1 = 4-(1H-imidazol-4-yl)benzoic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group P21/c with α = 22.281(2), b = 7.3959(7), c = 24.978(3) ?, β = 90.876(10), V = 4115.6(7) ?3, Z = 8, C20H22N4O8Ni, Mr = 505.13, Dc = 1.630 g/cm3, μ = 1.001 mm-1, S = 1.080, F(000) = 2096, the final R = 0.452 and wR = 0.1152 for 9380 observed reflections (I 〉 2σ(I)). The result of X-ray diffraction analysis revealed three different kinds of Ni(II) centre mononuclear molecules in the asymmetric unit. The independent mononuclear units are bridged to form a three-dimensional supramolecular polymer by extensive hydrogen bonds and C–H… non-covalent bonding interactions.
基金Projects(51304035,50974030)supported by the National Natural Science Foundation of ChinaProject(20110491512)supported by the Postdoctoral Science Foundation of China+2 种基金Project(20130042120034)supported by the Specialized Research Fund for the Doctoral Program of Higher Education(New Teachers),ChinaProject(120401008)supported by the Fundamental Research Funds for Central Universities,ChinaProject(L20150173)supported by the Scientific Research Fund of Liaoning Provincial Education Department,China
文摘Taking into consideration the gas compressibility and chemical reaction reversibility, a model was developed to study the interactions between gas flow and chemical reaction in porous media and resolved by the finite volume method on the basis of the gas-solid reaction aA(g)+bB(s)cC(g)+dD(s).The numerical analysis shows that the equilibrium constant is an important factor influencing the process of gas-solid reaction. The stoichiometric coefficients, molar masses of reactant gas, product gas and inert gas are the main factors influencing the density of gas mixture. The equilibrium constant influences the gas flow in porous media obviously when the stoichiometric coefficients satisfy a/c≠1.
基金National Natural Science Foundation of China (No. 20877036)Advanced Talent Foundation of Jiangsu University (No. 04JBG017).
文摘The non-covalent interaction between apigenin (API) and different functional monomers (α-methylacrylic acid (MAA), acrylamide (AM), 2-vinylpyridine (2-Vpy) and combined functional monomers (AM/2-Vpy)) was determined by UV spectrometry, and a series of apigenin molecularly imprinted polymers (API-MIPs) was synthesized with different functional monomers through molecular imprinting technology. The relationship between the non-covalent interaction of template/functional monomer and absorption of MIPs also was studied. The results showed that the order of the strength of the non-covalent interaction between API and different functional monomers in tetrahydrofuran (THF) is as follows: 2-Vpy> AM/2-Vpy>AM>MAA, which is positive correlation to the absorption capability of corresponding MIPs, and 2-Vpy is the optimum functional monomer among the used monomer for preparing API- MIPs.
基金supported by the funding from the National Natural Science Foundation of China(grant nos.51902187,52072224,and 51732007)the Natural Science Foundation of Shandong Province(ZR2018BEM010)+3 种基金the Science Fund for Distinguished Young Scholars of Shandong Province(ZR2019JQ16)the Fundamental Research Funds of Shandong UniversityYoung Elite Scientist Sponsorship Program by CAST(YESS)the support from Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
文摘Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability.
基金supported by the National Key Research and Development Program of China (2016YFD0401401)The Technological innovation project of Hubei Province (2017ABA142)+2 种基金The Science and Technology Plan Project of Tibet Autonomous Region (XZ201901NA04)The Science and Technology Plan Project of Hunan Science (2017NK2212)The Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016-OCRI)
文摘Plant phenolic acids are good sources of antioxidants and sinapic acid(SA)is one of them that can be applied in protein-based food system.However,little research is available regarding interactions between almond protein(AP)and SA.In this study,structure-affinity interaction between SA and AP,structure and antioxidant activity of proteins were investigated.Different mathematical models showed that Ka of binding SA and AP were 3.27×10^4 L/mol and 3.08×10^4 L/mol.CD(Circular dichroism)spectroscopy and FT-IR(Fourier transform infrared)spectroscopy showed that the amount of random coil andα-helix decreased whileβ-sheet increased in AP-SA complex.In combination,the interaction model of AP-SA complex was static quenching and attributed to hydrophobic interaction.Further,AP-SA complex exerted better DPPH radical scavenging ability(36.97±0.78%),ABTS+radical scavenging ability(47.26±0.45%),and higher ORAC value(2.41±0.23 M trolox/g)compared to AP.In the further,SA can be applied in protein matrix to improve film stability,gel strength and restraining fat oxidation degradation.
基金supported by the Fund for Creative Research Groups of National Natural Science Foundation of China (No. 51821093)the National Natural Science Foundation of China (Nos. 52175551, 52075484)(KT and DM)+2 种基金the National Key Research and Development Program (SQ2021YFE010405)(KT)Science Foundation Ireland (SFI) through awards Nos. 15/CDA/3491and 12/RC/2275_P2 (DT)computing resources at the SFI/Higher Education Authority Irish Center for High-End Computing (ICHEC)(SG and DT)
文摘Vectored non-covalent interactions—mainly hydrogen bonding and aromatic interactions—extensively contribute to(bio)-organic self-assembling processes and significantly impact the physicochemical properties of the associated superstructures.However,vectored non-covalent interaction-driven assembly occursmainly along one-dimensional(1D)or three-dimensional(3D)directions,and a two-dimensional(2D)orientation,especially that of multilayered,graphene-like assembly,has been reported less.In this present research,by introducing amino,hydroxyl,and phenyl moieties to the triazine skeleton,supramolecular layered assembly is achieved by vectored non-covalent interactions.The planar hydrogen bonding network results in high stability,with a thermal sustainability of up to about 330°C and a Young’s modulus of up to about 40 GPa.Upon introducing wrinkles by biased hydrogen bonding or aromatic interactions to disturb the planar organization,the stability attenuates.However,the intertwined aromatic interactions prompt a red edge excitation shift effect inside the assemblies,inducing broad-spectrum fluorescence covering nearly the entire visible light region(400–650 nm).We show that bionic,superhydrophobic,pillar-like arrays with contact angles of up to about 170°can be engineered by aromatic interactions using a physical vapor deposition approach,which cannot be realized through hydrogen bonding.Our findings show the feasibility of 2D assembly with engineerable properties by modulating vectored non-covalent interactions.
基金supported by the National Natural Science Foundation of China(51932003,51872115)2020 International Cooperation Project of the Department of Science and Technology of Jilin Province(20200801001GH)+2 种基金Project for Selfinnovation Capability Construction of Jilin Province Development and Reform Commission(2021C026)the Project supported by State Key Laboratory of Luminescence and Applications(KLA-2020-05)the Fundamental Research Funds for the Central Universities JLU,and“Double-First Class”Discipline for Materials Science&Engineering.
文摘The interaction between electrode materials and charge carriers is one of the central issues dominating underlying energy storage mechanisms.To address the notoriously significant volume changes accompanying intercalation or formation of alloy/compounds,we aim to introduce and utilize a weak,reversible Fe-N interaction during the(de)intercalation of ammonium ions(NH_(4)^(+))within iron(Ⅲ)hexacyanoferrate(FeHCF),inspired by manipulating the electrostatic adsorption between N and Fe in the early stages of ammonia synthesis(Bosch-Harber Process,Chemical Engineering)and steel nitriding processes(Metal Industry).Such strategy of switching well-balanced Fe-N interaction is confirmed in between the nitrogen of ammonium ions and highspin Fe in FeHCF,as observed by using X-ray absorption spectroscopy.The resulting material provided an extremely stable energy storage(58 mAh g^(-1) after 10000 cycles at current density of 1 A g^(-1))as well as high-rate performance(23.6 mAh g^(-1) at current density of 10 A g^(-1)).
基金the support from the National Natural Science Foundation of China (No. 21875184)the Natural Science Foundation of Shaanxi Province (No. 2022JC-10)Youth Talent of Shaanxi “TeZhi” Program。
文摘An in-depth analysis on the cooperativity of intermolecular interactions including hydrogen bonding andπ-π stacking in 1,3,5-triamino-2,4,6-trinitrobenzene(TATB) crystal was studied. Two quantities, cooperativity rate and energy, were defined to evaluate the nature and strength of cooperativity in a series of clusters diverging from 1D to 3D prototypes. The origin and mechanism of the cooperative effect were settled to demonstrate that the nature of cooperativity is determined by whether the non-covalent interactions compete or promote with each other, which is manifested by the changing trend of electron transfer. There exists obvious cooperative effect in intra-layer and inter-layer structures as they own the equivalent non-covalent interactions, while anti-cooperative effect is also observed if two interactions correlate with each other. On the whole, in the process of crystal formation, the apparent cooperativity is the check and balance of the two effects, which is capable to support a global interaction among all of molecules and contribute to the stabilization of system. Based on the results, one may get a new insight to understand the relationship between non-covalent interactions and low impact sensitivity.
文摘A rapid, fast and precise method has been developed and validated for the simultaneous determination of amlodipine with H1-receptor antagonists (cetirizine, fexofenadine, and buclizine) from dosage forms. The chromatography was performed on a Purospher? Star, C18 (5 mm, 250 × 4.6 mm) column using acetonitrile: buffer (0.01 mM) (40:60, v/v, pH adjusted to 3.0), as a mobile phase. The mobile phase was pumped at a flow rate of 1.0 mL·min-1 and UV detection was performed at 240 nm. The method was validated for linearity, accuracy, precision and specificity. The method was applied to study the interaction between amlodipine and H1-receptor antagonists. These interactions were carried out in simulated gastric juice (pH 1), simulated full stomach (pH 4), blood pH (pH 7.4) and simulating GI (pH 9). The interacting drugs were heated at 37℃ with intermit-tent shaking and the samples were withdrawn every thirty minutes for three hours and drug contents were analyzed by RP-HPLC techniques. In most cases the in vitro availability of amlodipine was decreased. It was observed that the change in in vitro availability was pH dependent.
基金This work was financially supported by the National Natural Science Foundation of China (No.10074005)
文摘The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Interaction domains derived from strong exchange coupling interactions between hard and soft magnetic grains were imaged using magnetic force microscopy (MFM). Maximum remanence, intrinsic coercivity, and maximum energy product values were obtained in the ribbons annealed at 700℃ for 15 min, which were composed of Pr2(Fe, Co)14B, α-(Fe, Co), and slight Pr2(Fe, CO)17 phases. Although Jr, Hci, and (Bn)max decreased gradually with further increase of annealing time, it is emphasized that comparatively high Jr and Hci and (BH)max were obtained in a wide annealing time period of 15 to 360 min. The shape of initial magnetization curves and hysteresis loops change as a function of annealing time, indicating different magnetization reversal routes, which can be fully explained by the corresponding microstructure.
基金supported by the Commonweal Specialized Research Fund of China Agriculture (3-20,201103015)
文摘Soybean root and stem rot caused by Phytophthora sojae is a destructive disease worldwide. Using genetic resistance is an important and major component in the integrated pest management of this disease. To understand molecular mechanisms of root and stem rot resistance in soybeans, the gene and protein expression in hypocotyls and stems of variety Suinong 10 carrying resistance genes Rps1a and Rps2 was investigated by using mRNA differential display reverse transcription PCR and two-dimensional electrophoresis at 0, 0.5, 1, 2, and 4 h after inoculation with P. sojae race 1. The results of the comparison of gene and protein expression showed that at least eight differential fragments at the transcriptional level were related to metabolic pathway, phytoalexin, and signal transduction in defense responses. Sequence analyses indicated that these fragments represented cinnamic acid 4-hydroxylase gene, ATP b gene coding ATP synthase b subunit and ubiquitin-conjugating enzyme gene which upregulated at 0.5 h post inoculation, blue copper protein gene and UDP-N-acetyl-a-D-galactosamine gene which upregulated at 2 h post inoculation, TGA-type basic leucine zipper protein TGA1.1 gene, cyclophilin gene, and 14-3-3 protein gene which upregulated at 4 h post inoculation. Three resistance-related proteins, a-subunit and b-subunit of ATP synthase, and cytochrome P450-like protein, were upregulated at 2 h post inoculation. The results suggested that resistance-related multiple proteins and genes were expressed in the recognition between soybean and P. sojae during zoospore germination, penetration and mycelium growth of P. sojae in soybean.
基金the support from the National Natural Science Foundation of China(Nos.21973079 and 22032004)the National Key R&D Program of China(No.2017YFA0204902)the Fundamental Research Funds for the Central Universities(Xiamen University:No.20720190002).
文摘Recent years have witnessed the fabrication of various non-covalent interaction-based molecular electronic devices.In the noncovalent interaction-based molecular devices,the strength of the interfacial coupling between molecule and electrode is weakened compared to that of the covalent interaction-based molecular devices,which provides wide applications in fabricating versatile molecular devices.In this review,we start with the methods capable of fabricating graphene-based nanogaps,and the following routes to construct non-covalent interaction-based molecular junctions with graphene electrodes.Then we give an introduction to the reported non-covalent interaction-based molecular devices with graphene electrodes equipped with different electrical functions.Moreover,we summarize the recent progress in the design and fabrication of new-type molecular devices based on graphene and graphene-like two-dimensional(2D)materials.The review ends with a prospect on the challenges and opportunities of non-covalent interaction-based molecular electronics in the near future.
基金supported by the National Natural Science Foundation of China(No.22105023).
文摘Searching for insensitive melt-castable energetic materials is still facing great challenges.In this work,we developed a promising strategy that is regulating the ratio of non-covalent interaction by fluorine atoms to regulate the melting point to develop new melt-castable energetic materials.Using this method,a highly sym-metric 1,2-difluoro-4,5-dinitrobenzene(DFDNB)was synthesized in one step and fully characterized.DFDNB has a desirable melting point(83.2℃),high decomposition temperature(>400℃),acceptable detonation properties(6786 m s^(-1),21.5 GPa)but superior safety performance(>40 J,>360 N),and excellent chemical compatibility with 1,3,5-trinitro-1,3,5-triazine(RDX)that make it a promising insensitive melt-castable energetic material.A detailed study based on crystal stacking,electrostatic potential,and intermolecular weak interactions in DFDNB and its isomers or analogs demonstrates that non-covalent interactions including the C-F…H,N-O…H hydrogen bonding,and C-F…O halogen-like bonding play an important role in regulating the melting point.
基金supported by special fund for research institutes supplied the National Key Research and Development Project(2018YFC0807804)the General Program of National Natural Science Foundation of China(42074175)the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China(2020JM-714,2020JQ-741,2021JQ-949).
基金the National Natural Science Foundation of China(No.21901199)Xi’an Jiaotong University(No.7121192002)the Fundamental Research Funds of the Central Universities(No.xtr072022003)for financial support.
文摘Non-covalent interactions are of significance in supramolecular chemistry and biochemistry,while synthetic procedures driven by these weak interactions remain challenging and rare.Inspired by the lone pair-π interaction presence in the Z-DNA structure,a light-induced regioselective sulfonation of ethers taking advantage of the lone pair-π interaction between the oxygen of ethers and sulfonyl chlorides has been disclosed.Moreover,this strategy is also applicable to the sulfonation of aniline derivatives.Features of the methods include readily accessible starting materials,high atom-economy,green and photocatalyst-free conditions and broad functional group tolerance.Mechanism studies suggest that the lone pair-πinteraction plays an important role to initiate the transformation.