Nanocrystalline powders of ZrO_2–8mol%SmO1.5(8Sm SZ), ZrO_2–8mol%GdO1.5(8Gd SZ), and ZrO_2–8mol%YO1.5(8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogra...Nanocrystalline powders of ZrO_2–8mol%SmO1.5(8Sm SZ), ZrO_2–8mol%GdO1.5(8Gd SZ), and ZrO_2–8mol%YO1.5(8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry(DTA/TG), Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), Raman spectroscopy, and high-resolution transmission electron microscopy(HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO_2 freeze-dried precipitates crystallized at 529, 465, and 467°C in the case of 8Sm SZ, 8Gd SZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO_2 when the dried precipitates were calcined in the temperature range from 600 to 1000°C for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 k J/mol for 8Sm SZ, 8Gd SZ, and 8YSZ respectively.展开更多
2,7-Di(9,9-dimethyl-9H-fluoren-l-yl)-9H-thioxanthen-9-one (DMBFTX) with thermally activated delayed fluorescence (TADF) was well designed and synthesized. The phosphorescent organic lightemitting device (PHOLED...2,7-Di(9,9-dimethyl-9H-fluoren-l-yl)-9H-thioxanthen-9-one (DMBFTX) with thermally activated delayed fluorescence (TADF) was well designed and synthesized. The phosphorescent organic lightemitting device (PHOLED) based on this novel TADF host material displays a stable red phosphorescence region, a peak external quantum efficiency (EQE) value of 12.9% and a low EQE roll-off of 38.8%at a luminance of 10000 cd/m2, which is benefited from the reverse intersystem crossing (RISC) of TADF host and less populated triplet exitons. Notably, the red device based on the TADF host DMBFrX exhibits superior electroluminescence performance and reduced efficiency roll-offcompared with the one hosted by commercially available host 1,3-bis(9-carbazolyl)benzene (mCP), illustrating the high potential of employing the TADF host material with small energy gap to reduce efficiency roll-off in PHOLED.展开更多
文摘Nanocrystalline powders of ZrO_2–8mol%SmO1.5(8Sm SZ), ZrO_2–8mol%GdO1.5(8Gd SZ), and ZrO_2–8mol%YO1.5(8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry(DTA/TG), Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), Raman spectroscopy, and high-resolution transmission electron microscopy(HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO_2 freeze-dried precipitates crystallized at 529, 465, and 467°C in the case of 8Sm SZ, 8Gd SZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO_2 when the dried precipitates were calcined in the temperature range from 600 to 1000°C for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 k J/mol for 8Sm SZ, 8Gd SZ, and 8YSZ respectively.
基金supported by National Natural Science Foundation of China(No. 61605158)the Science and TechnologyDepartment of Shaanxi Province(No. 2016JQ2028)the Education Department of Shaanxi Province(No. 16JK1790)
文摘2,7-Di(9,9-dimethyl-9H-fluoren-l-yl)-9H-thioxanthen-9-one (DMBFTX) with thermally activated delayed fluorescence (TADF) was well designed and synthesized. The phosphorescent organic lightemitting device (PHOLED) based on this novel TADF host material displays a stable red phosphorescence region, a peak external quantum efficiency (EQE) value of 12.9% and a low EQE roll-off of 38.8%at a luminance of 10000 cd/m2, which is benefited from the reverse intersystem crossing (RISC) of TADF host and less populated triplet exitons. Notably, the red device based on the TADF host DMBFrX exhibits superior electroluminescence performance and reduced efficiency roll-offcompared with the one hosted by commercially available host 1,3-bis(9-carbazolyl)benzene (mCP), illustrating the high potential of employing the TADF host material with small energy gap to reduce efficiency roll-off in PHOLED.