Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equat...Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equation(RWEQ) model to simulate wind erosion intensity. The results showed that an area of approximately 47.8 × 10~4 km^2 experienced wind erosion in 2010, 23.2% of this erosion could be rated as severe, and 46.0% as moderate. Both the area and the intensity of wind erosion had decreased from 2001 to 2010, the wind erosion area reduced 10.1%, and wind erosion intensity decreased by 29.4%. Precipitation, wind speed, population size and urbanization in rural areas, and gross domestic product of primary industry(GDP1) were the main factors influencing wind erosion. Overall, these factors accounted for 88.8% of the wind erosion. These results indicated that the decrease in wind erosion over the past decade related to the increase in precipitation and the decrease in the number of windy days, while modest urban development and optimization of the economic structure might partially reduced the level of ecological pressure, highlighting the importance of human activities in controlling wind erosion.展开更多
In order to monitor the pattern, distribution, and trend of land use/cover change (LUCC) and its impacts on soil erosion, it is highly appropriate to adopt Remote Sensing (RS) data and Geographic Information Syst...In order to monitor the pattern, distribution, and trend of land use/cover change (LUCC) and its impacts on soil erosion, it is highly appropriate to adopt Remote Sensing (RS) data and Geographic Information System (GIS) to analyze, assess, simulate, and predict the spatial and temporal evolution dynamics. In this paper, multi-temporal Landsat TM/ETM+ re- motely sensed data are used to generate land cover maps by image classification, and the Cellular Automata Markov (CA_Markov) model is employed to simulate the evolution and trend of landscape pattern change. Furthermore, the Re- vised Universal Soil Loss Equation (RUSLE) is used to evaluate the situation of soil erosion in the case study mining area. The trend of soil erosion is analyzed according to total/average amount of soil erosion, and the rainfall (R), cover man- agement (C), and support practice (P) factors in RUSLE relevant to soil erosion are determined. The change trends of soil erosion and the relationship between land cover types and soil erosion amount are analyzed. The results demonstrate that the CA_Markov model is suitable to simulate and predict LUCC trends with good efficiency and accuracy, and RUSLE can calculate the total soil erosion effectively. In the study area, there was minimal erosion grade and this is expected to con- tinue to decline in the next few years, according to our prediction results.展开更多
Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and incre...Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments.展开更多
Inner Mongolia is the important ecological barrier zone in northern China,which plays an important role in the prevention and control of wind in the regional ecosystem.Based on the Revised Wind Erosion Equation(RWEQ)m...Inner Mongolia is the important ecological barrier zone in northern China,which plays an important role in the prevention and control of wind in the regional ecosystem.Based on the Revised Wind Erosion Equation(RWEQ)model and the cost-recovery method,this study simulated the wind erosion prevention service(WEPS)in Inner Mongolia in 2010 and 2015,investigated the spatial pattern of material and monetary value of WEPS,and analyzed the differences among various cities and various ecosystems.The results indicated that the total WEPS of Inner Mongolia was estimated to be 73.87×10^(8) t in 2015,which was 4.61×10^(8) t less than in 2010,while the monetary value of WEPS was calculated to be 738.66×10^(8) yuan in 2015,which was 46.16×10^(8) yuan less than in 2010.Among all the leagues and cities,Xilin Gol League supported the highest WEPS,reaching 18.65×10^(8) t in 2015,while Wuhai provided the lowest.The WEPS of Hulunbeier increased the most,by 4.37×10^(8) t from 2010 to 2015.The WEPS in the grassland ecosystem was the highest among the different ecosystems,accounting for more than55%of the total WEPS in Inner Mongolia,but it was reduced by 1.05×10^(8) t during the same period.The WEPS in the forest ecosystem increased the most,reaching 0.19×10^(8) t.This study found that the implementation of projects such as returning farmland to forests and grasses and sand control effectively increased the WEPS by increasing the forest area.However,unsuitable land use increased the desertification of ecosystems which resulted in a reduction of WEPS in Inner Mongolia.展开更多
Barchan dunes are among the most common accumulative phenomena made by wind erosion,which are usually formed in regions where the prevailing wind direction is almost constant throughout the year and there is not enoug...Barchan dunes are among the most common accumulative phenomena made by wind erosion,which are usually formed in regions where the prevailing wind direction is almost constant throughout the year and there is not enough sand to completely cover the land surface.Barchans are among the most common windy landscapes in Pashoueyeh Erg in the west of Lut Desert,Iran.This study aims to elaborate on morphological properties of barchans in this region using mathematical and statistical models.The results of these methods are very important in investigating barchan shapes and identifying their behavior.Barchan shapes were mathematically modeled by simulating them in the coordinate system through nonlinear parabolic equations,so that two separate equations were calculated for barchan windward and slip-face parabolas.The type and intensity of relationships between barchan morphology and mathematical parameters were determined by the statistical modeling.The results indicated that the existing relationships followed the power correlation with the maximum coefficient of determination and minimum error of estimate.Combining the above two methods is a powerful basis for stimulating barchans in virtual and laboratory environments.The most important result of this study is to convert the mathematical and statistical models of barchan morphology to each other.Focal length is one of the most important parameters of barchan parabolas,suggesting different states of barchans in comparison with each other.As the barchan's focal length decreases,its opening becomes narrower,and the divergence of the barchan's horns reduces.Barchans with longer focal length have greater width,dimensions,and volume.In general,identifying and estimating the morphometric and planar parameters of barchans is effective in how they move,how much they move,and how they behave in the environment.These cases play an important role in the management of desert areas.展开更多
Using meteorological and remote sensing data and changes in vegetation cover during the wind erosion season in northern China, a revised wind erosion equation was applied to evaluate spatiotemporal variation in soil e...Using meteorological and remote sensing data and changes in vegetation cover during the wind erosion season in northern China, a revised wind erosion equation was applied to evaluate spatiotemporal variation in soil erosion and conservation since the 1990s, and to reveal the effects of the change of vegetation coverage on the wind erosion control service. The results showed that average soil erosion in northern China between 1990 and 2010 was 16.01 bil ion tons and was decreasing. The most seriously eroded areas were mainly distributed in large desert areas or low cover grasslands. Most wind erosion occurred in spring, accounting for 45.93% of total wind erosion. The average amount of sand ifxation service function for northern China between 1990 and 2010 was 20.31 billion tons. Given the influence of wind erosion forces, the service function for sand fixation cannot effectively highlight the role of sand ifxation from the ecosystem itself. The retention rate of service function for sand ifxation reveals the role of the ecosystem itself. The distribution characteristics of the soil retention rate are similar to vegetation cover, which shows a gradual decrease from southeast to northwest in the study area. Improved spring vegetation cover was observed mainly on the Loess Plateau, Qinghai-Tibet Plateau, in northern Hebei, eastern Inner Mongolia and northeast China after the implementation of ecosystem projects. The soil retention rate in most areas showed a signiifcant positive relationship with grassland vegetation in spring (r>0.7, p<0.01). The increments of ecosystem service function for various ecological systems are different. Increments for the grassland ecosystem, forest ecosystem, farmland ecosystem and desert ecosystem are 2.02%, 1.15%, 0.99% and 0.86%, respectively.展开更多
Wind erosion is largely controlled by climate conditions.In this study,we examined the influences of changes in wind speed,soil wetness,snow cover,and vegetation cover related to climate change on wind erosion in nort...Wind erosion is largely controlled by climate conditions.In this study,we examined the influences of changes in wind speed,soil wetness,snow cover,and vegetation cover related to climate change on wind erosion in northern China during 1981–2016.We used the wind erosion force,defined as wind factor in the Revised Wind Erosion Equation Model,to describe the effect of wind speed on wind erosion.The results show that wind erosion force presented a long-term decreasing trend in the southern Northwest,northern Northwest,and eastern northern China during 1981–2016.In the Gobi Desert,the wind erosion force presented for 1981–1992 a decreasing trend,for 1992–2012 an increasing trend,and thereafter a weakly decreasing trend.In comparison to wind speed,soil wetness and snow cover had weaker influences on wind erosion in northern China,while vegetation cover played a significant role in the decrease of wind erosion in the eastern northern China during 1982–2015.展开更多
土壤侵蚀量的定量研究可为国家生态环境建设和水土保持宏观决策的制定提供重要的依据。修正通用土壤流失方程(revised universal soil loss equation,RUSLE)是开展土壤侵蚀定量评价的主要手段。该文在地理信息系统(geographic informati...土壤侵蚀量的定量研究可为国家生态环境建设和水土保持宏观决策的制定提供重要的依据。修正通用土壤流失方程(revised universal soil loss equation,RUSLE)是开展土壤侵蚀定量评价的主要手段。该文在地理信息系统(geographic information system,GIS)的支持下,依据中国土壤流失方程各因子的算法确定RUSLE模型各因子值,估算了三峡库区黄冲子小流域不同时期的土壤侵蚀量,并与基于泥沙平衡原理计算的土壤侵蚀量比较后分析RUSLE模型在库区小流域的适用性。结果表明,基于RUSLE模型估算的小流域1963-2000年(农地小流域)和2001-2014年(林地小流域)的年均土壤侵蚀模数分别为2246.09和868.3 t/(km2·a),其结果与采用137Cs和210Pb技术的塘库沉积物定年结果基本吻合,表明210Pb定年结果可靠。依据泥沙平衡原理计算的小流域1963-2000年和2001-2014年的年均土壤侵蚀模数分别为942.48和811.47t/(km2·a)。RUSLE模型估算小流域1963-2000年和2001-2014年的土壤侵蚀模数相对误差分别为138.32%和7.00%。因此RUSLE模型适用于库区林地小流域,而不适用于库区农地小流域;但是基于地形因子(LS因子)修正的RUSLE模型估算结果相对误差减少至8.14%,其适用于库区农地小流域。展开更多
基金Under the auspices of National Key Technology Research and Development Program of China(No.2011BAC09B08)Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change Between 2000 and 2010(No.STSN-04-01)
文摘Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equation(RWEQ) model to simulate wind erosion intensity. The results showed that an area of approximately 47.8 × 10~4 km^2 experienced wind erosion in 2010, 23.2% of this erosion could be rated as severe, and 46.0% as moderate. Both the area and the intensity of wind erosion had decreased from 2001 to 2010, the wind erosion area reduced 10.1%, and wind erosion intensity decreased by 29.4%. Precipitation, wind speed, population size and urbanization in rural areas, and gross domestic product of primary industry(GDP1) were the main factors influencing wind erosion. Overall, these factors accounted for 88.8% of the wind erosion. These results indicated that the decrease in wind erosion over the past decade related to the increase in precipitation and the decrease in the number of windy days, while modest urban development and optimization of the economic structure might partially reduced the level of ecological pressure, highlighting the importance of human activities in controlling wind erosion.
基金supported by the Fundamental Research Funds for the Universities of Henan Province (NSFRF140113)the Jiangsu Provincial Natural Science Foundation (No. BK2012018)+4 种基金the Natural Science Foundation of China (No. 41171323)the Special Funding Projects of Mapping and Geographic Information Nonprofit research (No. 201412020)the National Natural Science Foundation of China and the Shenhua Coal Industry Group Co., Ltd. (No. U1261206)the Ph.D. Fund of Henan Polytechnic University (No. B2015-20)the youth fund of Henan Polytechnic University (No. Q2015-3)
文摘In order to monitor the pattern, distribution, and trend of land use/cover change (LUCC) and its impacts on soil erosion, it is highly appropriate to adopt Remote Sensing (RS) data and Geographic Information System (GIS) to analyze, assess, simulate, and predict the spatial and temporal evolution dynamics. In this paper, multi-temporal Landsat TM/ETM+ re- motely sensed data are used to generate land cover maps by image classification, and the Cellular Automata Markov (CA_Markov) model is employed to simulate the evolution and trend of landscape pattern change. Furthermore, the Re- vised Universal Soil Loss Equation (RUSLE) is used to evaluate the situation of soil erosion in the case study mining area. The trend of soil erosion is analyzed according to total/average amount of soil erosion, and the rainfall (R), cover man- agement (C), and support practice (P) factors in RUSLE relevant to soil erosion are determined. The change trends of soil erosion and the relationship between land cover types and soil erosion amount are analyzed. The results demonstrate that the CA_Markov model is suitable to simulate and predict LUCC trends with good efficiency and accuracy, and RUSLE can calculate the total soil erosion effectively. In the study area, there was minimal erosion grade and this is expected to con- tinue to decline in the next few years, according to our prediction results.
基金Chinese Academy of Sciences (CAS)The World Academy of Science (TWAS) for providing financial support
文摘Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments.
基金The Strategic Priority Research Program of Chinese Academy of Sciences(XDA20020402)The National Natural Science Foundation of China(41971272)。
文摘Inner Mongolia is the important ecological barrier zone in northern China,which plays an important role in the prevention and control of wind in the regional ecosystem.Based on the Revised Wind Erosion Equation(RWEQ)model and the cost-recovery method,this study simulated the wind erosion prevention service(WEPS)in Inner Mongolia in 2010 and 2015,investigated the spatial pattern of material and monetary value of WEPS,and analyzed the differences among various cities and various ecosystems.The results indicated that the total WEPS of Inner Mongolia was estimated to be 73.87×10^(8) t in 2015,which was 4.61×10^(8) t less than in 2010,while the monetary value of WEPS was calculated to be 738.66×10^(8) yuan in 2015,which was 46.16×10^(8) yuan less than in 2010.Among all the leagues and cities,Xilin Gol League supported the highest WEPS,reaching 18.65×10^(8) t in 2015,while Wuhai provided the lowest.The WEPS of Hulunbeier increased the most,by 4.37×10^(8) t from 2010 to 2015.The WEPS in the grassland ecosystem was the highest among the different ecosystems,accounting for more than55%of the total WEPS in Inner Mongolia,but it was reduced by 1.05×10^(8) t during the same period.The WEPS in the forest ecosystem increased the most,reaching 0.19×10^(8) t.This study found that the implementation of projects such as returning farmland to forests and grasses and sand control effectively increased the WEPS by increasing the forest area.However,unsuitable land use increased the desertification of ecosystems which resulted in a reduction of WEPS in Inner Mongolia.
文摘Barchan dunes are among the most common accumulative phenomena made by wind erosion,which are usually formed in regions where the prevailing wind direction is almost constant throughout the year and there is not enough sand to completely cover the land surface.Barchans are among the most common windy landscapes in Pashoueyeh Erg in the west of Lut Desert,Iran.This study aims to elaborate on morphological properties of barchans in this region using mathematical and statistical models.The results of these methods are very important in investigating barchan shapes and identifying their behavior.Barchan shapes were mathematically modeled by simulating them in the coordinate system through nonlinear parabolic equations,so that two separate equations were calculated for barchan windward and slip-face parabolas.The type and intensity of relationships between barchan morphology and mathematical parameters were determined by the statistical modeling.The results indicated that the existing relationships followed the power correlation with the maximum coefficient of determination and minimum error of estimate.Combining the above two methods is a powerful basis for stimulating barchans in virtual and laboratory environments.The most important result of this study is to convert the mathematical and statistical models of barchan morphology to each other.Focal length is one of the most important parameters of barchan parabolas,suggesting different states of barchans in comparison with each other.As the barchan's focal length decreases,its opening becomes narrower,and the divergence of the barchan's horns reduces.Barchans with longer focal length have greater width,dimensions,and volume.In general,identifying and estimating the morphometric and planar parameters of barchans is effective in how they move,how much they move,and how they behave in the environment.These cases play an important role in the management of desert areas.
基金National Key Technology R&D Program(No.2013BAC03B04)National Basic Research Program of China(973 Program)(No.2009CB421105)
文摘Using meteorological and remote sensing data and changes in vegetation cover during the wind erosion season in northern China, a revised wind erosion equation was applied to evaluate spatiotemporal variation in soil erosion and conservation since the 1990s, and to reveal the effects of the change of vegetation coverage on the wind erosion control service. The results showed that average soil erosion in northern China between 1990 and 2010 was 16.01 bil ion tons and was decreasing. The most seriously eroded areas were mainly distributed in large desert areas or low cover grasslands. Most wind erosion occurred in spring, accounting for 45.93% of total wind erosion. The average amount of sand ifxation service function for northern China between 1990 and 2010 was 20.31 billion tons. Given the influence of wind erosion forces, the service function for sand fixation cannot effectively highlight the role of sand ifxation from the ecosystem itself. The retention rate of service function for sand ifxation reveals the role of the ecosystem itself. The distribution characteristics of the soil retention rate are similar to vegetation cover, which shows a gradual decrease from southeast to northwest in the study area. Improved spring vegetation cover was observed mainly on the Loess Plateau, Qinghai-Tibet Plateau, in northern Hebei, eastern Inner Mongolia and northeast China after the implementation of ecosystem projects. The soil retention rate in most areas showed a signiifcant positive relationship with grassland vegetation in spring (r>0.7, p<0.01). The increments of ecosystem service function for various ecological systems are different. Increments for the grassland ecosystem, forest ecosystem, farmland ecosystem and desert ecosystem are 2.02%, 1.15%, 0.99% and 0.86%, respectively.
基金financially supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.41621061)the National Natural Science Foundation of China(Grants Nos.41630747,41671501,41571039)the State Key Laboratory of Earth Surface Processes and Resource Ecology(Grant No.2017-ZY-05)。
文摘Wind erosion is largely controlled by climate conditions.In this study,we examined the influences of changes in wind speed,soil wetness,snow cover,and vegetation cover related to climate change on wind erosion in northern China during 1981–2016.We used the wind erosion force,defined as wind factor in the Revised Wind Erosion Equation Model,to describe the effect of wind speed on wind erosion.The results show that wind erosion force presented a long-term decreasing trend in the southern Northwest,northern Northwest,and eastern northern China during 1981–2016.In the Gobi Desert,the wind erosion force presented for 1981–1992 a decreasing trend,for 1992–2012 an increasing trend,and thereafter a weakly decreasing trend.In comparison to wind speed,soil wetness and snow cover had weaker influences on wind erosion in northern China,while vegetation cover played a significant role in the decrease of wind erosion in the eastern northern China during 1982–2015.
文摘土壤侵蚀量的定量研究可为国家生态环境建设和水土保持宏观决策的制定提供重要的依据。修正通用土壤流失方程(revised universal soil loss equation,RUSLE)是开展土壤侵蚀定量评价的主要手段。该文在地理信息系统(geographic information system,GIS)的支持下,依据中国土壤流失方程各因子的算法确定RUSLE模型各因子值,估算了三峡库区黄冲子小流域不同时期的土壤侵蚀量,并与基于泥沙平衡原理计算的土壤侵蚀量比较后分析RUSLE模型在库区小流域的适用性。结果表明,基于RUSLE模型估算的小流域1963-2000年(农地小流域)和2001-2014年(林地小流域)的年均土壤侵蚀模数分别为2246.09和868.3 t/(km2·a),其结果与采用137Cs和210Pb技术的塘库沉积物定年结果基本吻合,表明210Pb定年结果可靠。依据泥沙平衡原理计算的小流域1963-2000年和2001-2014年的年均土壤侵蚀模数分别为942.48和811.47t/(km2·a)。RUSLE模型估算小流域1963-2000年和2001-2014年的土壤侵蚀模数相对误差分别为138.32%和7.00%。因此RUSLE模型适用于库区林地小流域,而不适用于库区农地小流域;但是基于地形因子(LS因子)修正的RUSLE模型估算结果相对误差减少至8.14%,其适用于库区农地小流域。