The growth of {100}-oriented CVD diamond film under two modifications ofJ-B-H model at low substrate temperatures was simulated by using a revised KMC method at atomicscale. The results were compared both in Cl-contai...The growth of {100}-oriented CVD diamond film under two modifications ofJ-B-H model at low substrate temperatures was simulated by using a revised KMC method at atomicscale. The results were compared both in Cl-containing systems and in C-H system as follows: (1)Substrate temperature can produce an important effect both on film deposition rate and on surfaceroughness; (2) Aomic Cl takes an active role for the growth of diamond film at low temperatures; (3){100}-oriented diamond film cannot deposit under single carbon insertion mechanism, which disagreeswith the predictions before; (4) The explanation of the exact role of atomic Cl is not provided inthe simulation results.展开更多
基金This project was supported by National Natural Science Foundation of China (No.59872003).]
文摘The growth of {100}-oriented CVD diamond film under two modifications ofJ-B-H model at low substrate temperatures was simulated by using a revised KMC method at atomicscale. The results were compared both in Cl-containing systems and in C-H system as follows: (1)Substrate temperature can produce an important effect both on film deposition rate and on surfaceroughness; (2) Aomic Cl takes an active role for the growth of diamond film at low temperatures; (3){100}-oriented diamond film cannot deposit under single carbon insertion mechanism, which disagreeswith the predictions before; (4) The explanation of the exact role of atomic Cl is not provided inthe simulation results.