Inefficient separation of inorganic salts and organic matters in crystallization mother liquor is still a problem to industrial wa stewater treatment since the high salinity significantly impedes organic pollutant deg...Inefficient separation of inorganic salts and organic matters in crystallization mother liquor is still a problem to industrial wa stewater treatment since the high salinity significantly impedes organic pollutant degradation by oxidation or incineration.In the study,acidification combined electrodialysis(ED)was attempted to effectively separate Cl-ions from organics in concentrate pulping wastewater.Membrane’s rejection rate to total organic carbon(TOC)was 85%at wastewater intrinsic pH=9.8 and enhanced to 93%by acidifying it to pH=2 in ED process.Negative-charged alkaline organic compounds(mainly lignin)could be liberated from their sodium salt forms and coagulated in acidification pretreatment.Neutralization of the organic substances also made their electro-migration less effective under electric driving force and in particular improved separation efficiency of chloride and organics.After acid-ED coupled treatment(pH=2 and J=40 mA·cm-2)[TOC]remarkably reduced from 1.315 g·L-1 to 0.048 g·L-1 and[Cl-]accumulated to 130 g·L-1 in concentrate solution.Recovery rate of NaCl was 89%and the power consumption was 0.38 kW·h·kg-1 NaCl.Irreversible fouling was not caused as electric resistance of membrane pile maintained stably.In conclusion,acidic-ED is a practical option to treat salinity organic wastewater when current techniques including thermal evaporation and pressure-driven membrane se paration present limitations.展开更多
The mother liquor for preparing industrial HCN was investigated, to analyze the side-products’ structure and influence of molecular interactions of side-products with glycine and solvent on the glycine’s crystalliza...The mother liquor for preparing industrial HCN was investigated, to analyze the side-products’ structure and influence of molecular interactions of side-products with glycine and solvent on the glycine’s crystallization process. The side-products(SPs) were super-branched oligmers with plenty of hydrophilic groups, which could affect the crystallization process by interactions such as hydrogen bond. Alcohol-water mixed solvent with different polyols could be used to weaken the SPs-glycine interaction and strengthen the SPs-water interaction, which help to improve the crystallization efficiency and purity. After optimization, SPs’ mass fraction in glycine could be reduced by 80% and the morphology of crystal particles could also be improved.展开更多
Treatment to crystallization mother liquor containing high concentration of organic and inorganic substances is a challenge in zero liquid discharge of industrial wastewater.Acid precipitation coupled membrane-dispers...Treatment to crystallization mother liquor containing high concentration of organic and inorganic substances is a challenge in zero liquid discharge of industrial wastewater.Acid precipitation coupled membrane-dispersion advanced oxidation process(MAOP)was proposed for organics degradation before salt crystallization by evaporation.With acid-MAOP treatment CODCrin mother liquor of pulping wastewater was eliminated by 55.2%from ultrahigh initial concentration up to 12,500 mg·L^-1.The decolorization rate was 96.5%.Recovered salt was mainly NaCl(83.3 wt%)having whiteness 50 brighter than industrial baysalt of whiteness 45.The oxidation conditions were optimized as CO3=0.11 g·L^-1 and CH2O2=2.0 g·L^-1 with dispersing rate 0.53 ml·min^-1 for 100 min reaction toward acidified liquor of p H=2.Acidification has notably improved evaporation efficiency during crystallization.Addition of H2O2 made through membrane dispersion has eliminated hydroxyl radical"quench effect"and enhanced the degradation capacity,in particular,the breakage of carbon-chloride bonds(of both aliphatic and aromatic).As a result,the proposed coupling method has improved organic pollutant reduction so as the purity of salt from the wastewater mixture which can facilitate water and salt recycling in industry.展开更多
以氯化镁为絮凝剂絮凝回收分子筛催化剂晶化母液中有效成分,通过单因素实验研究了絮凝剂用量、絮凝温度、絮凝时间等因素对絮凝效果的影响,确定了最佳絮凝条件为:晶化母液20.0 m L,氯化镁(10%)2.0 m L,温度20℃,絮凝时间15 s,母液中磷...以氯化镁为絮凝剂絮凝回收分子筛催化剂晶化母液中有效成分,通过单因素实验研究了絮凝剂用量、絮凝温度、絮凝时间等因素对絮凝效果的影响,确定了最佳絮凝条件为:晶化母液20.0 m L,氯化镁(10%)2.0 m L,温度20℃,絮凝时间15 s,母液中磷含量由最初20.58 mg·m L^(-1)降低到1.11 mg·m L^(-1),除磷率达94.6%.采用可见分光光度计测定了晶化母液和絮凝后清液的磷含量.展开更多
基金Supported by the Prosepective Joint Research Project of Jiangsu Province(BY2014005-06).
文摘Inefficient separation of inorganic salts and organic matters in crystallization mother liquor is still a problem to industrial wa stewater treatment since the high salinity significantly impedes organic pollutant degradation by oxidation or incineration.In the study,acidification combined electrodialysis(ED)was attempted to effectively separate Cl-ions from organics in concentrate pulping wastewater.Membrane’s rejection rate to total organic carbon(TOC)was 85%at wastewater intrinsic pH=9.8 and enhanced to 93%by acidifying it to pH=2 in ED process.Negative-charged alkaline organic compounds(mainly lignin)could be liberated from their sodium salt forms and coagulated in acidification pretreatment.Neutralization of the organic substances also made their electro-migration less effective under electric driving force and in particular improved separation efficiency of chloride and organics.After acid-ED coupled treatment(pH=2 and J=40 mA·cm-2)[TOC]remarkably reduced from 1.315 g·L-1 to 0.048 g·L-1 and[Cl-]accumulated to 130 g·L-1 in concentrate solution.Recovery rate of NaCl was 89%and the power consumption was 0.38 kW·h·kg-1 NaCl.Irreversible fouling was not caused as electric resistance of membrane pile maintained stably.In conclusion,acidic-ED is a practical option to treat salinity organic wastewater when current techniques including thermal evaporation and pressure-driven membrane se paration present limitations.
基金Supported by the National Natural Science Foundation of China(Nos.21006130,20806095)
文摘The mother liquor for preparing industrial HCN was investigated, to analyze the side-products’ structure and influence of molecular interactions of side-products with glycine and solvent on the glycine’s crystallization process. The side-products(SPs) were super-branched oligmers with plenty of hydrophilic groups, which could affect the crystallization process by interactions such as hydrogen bond. Alcohol-water mixed solvent with different polyols could be used to weaken the SPs-glycine interaction and strengthen the SPs-water interaction, which help to improve the crystallization efficiency and purity. After optimization, SPs’ mass fraction in glycine could be reduced by 80% and the morphology of crystal particles could also be improved.
基金Financial supports from the Prospective Joint Research Project of Jiangsu Province(BY2014005-06)National Natural Science Foundation of China(U1510202)the Jiangsu National Synergistic Innovation Center for Advanced Materials(SICAM)。
文摘Treatment to crystallization mother liquor containing high concentration of organic and inorganic substances is a challenge in zero liquid discharge of industrial wastewater.Acid precipitation coupled membrane-dispersion advanced oxidation process(MAOP)was proposed for organics degradation before salt crystallization by evaporation.With acid-MAOP treatment CODCrin mother liquor of pulping wastewater was eliminated by 55.2%from ultrahigh initial concentration up to 12,500 mg·L^-1.The decolorization rate was 96.5%.Recovered salt was mainly NaCl(83.3 wt%)having whiteness 50 brighter than industrial baysalt of whiteness 45.The oxidation conditions were optimized as CO3=0.11 g·L^-1 and CH2O2=2.0 g·L^-1 with dispersing rate 0.53 ml·min^-1 for 100 min reaction toward acidified liquor of p H=2.Acidification has notably improved evaporation efficiency during crystallization.Addition of H2O2 made through membrane dispersion has eliminated hydroxyl radical"quench effect"and enhanced the degradation capacity,in particular,the breakage of carbon-chloride bonds(of both aliphatic and aromatic).As a result,the proposed coupling method has improved organic pollutant reduction so as the purity of salt from the wastewater mixture which can facilitate water and salt recycling in industry.
文摘以氯化镁为絮凝剂絮凝回收分子筛催化剂晶化母液中有效成分,通过单因素实验研究了絮凝剂用量、絮凝温度、絮凝时间等因素对絮凝效果的影响,确定了最佳絮凝条件为:晶化母液20.0 m L,氯化镁(10%)2.0 m L,温度20℃,絮凝时间15 s,母液中磷含量由最初20.58 mg·m L^(-1)降低到1.11 mg·m L^(-1),除磷率达94.6%.采用可见分光光度计测定了晶化母液和絮凝后清液的磷含量.