In this article, hydrogenation of benzene in liquid phase at presence rhodium support catalyst is considered, where as carrier is used pillar structural montmorillonite obtaining from bentonite clay. The degree of usi...In this article, hydrogenation of benzene in liquid phase at presence rhodium support catalyst is considered, where as carrier is used pillar structural montmorillonite obtaining from bentonite clay. The degree of using an internal surface of porous system is depended of the size particles.展开更多
The hydrosilylation of alkenes with triethoxysilane has been achieved at 120 C in the presence of 0.01 mol%of thioetherfunctionalized MCM-41 anchored rhodium complex,affording the corresponding addition products in 68...The hydrosilylation of alkenes with triethoxysilane has been achieved at 120 C in the presence of 0.01 mol%of thioetherfunctionalized MCM-41 anchored rhodium complex,affording the corresponding addition products in 68-91%yields.This supported rhodium complex can be reused several times without noticeable loss of activity.Our system not only solves the basic problems of catalyst separation and recovery,but also avoids the use of phosphine ligands.展开更多
The promotion effect of cationic gemini surfactants for the hydroformylation of 1-dodecene in the organic/aqueous biphasic catalytic system is reported. The hydroformylation reaction in the presence of gemini surfacta...The promotion effect of cationic gemini surfactants for the hydroformylation of 1-dodecene in the organic/aqueous biphasic catalytic system is reported. The hydroformylation reaction in the presence of gemini surfactant occurred with higher turnover frequency and higher selectivity for linear aldehyde than using conventional monomeric surfactant CTAB.展开更多
Bromine mediation has been regarded as one of the most efficient ways to activate and convert methane to useful organics.This article reports the effects of active components(Rh,Ru,Pd and Pt)and supports(SiO2,Mg O and...Bromine mediation has been regarded as one of the most efficient ways to activate and convert methane to useful organics.This article reports the effects of active components(Rh,Ru,Pd and Pt)and supports(SiO2,Mg O and Al2O3)on the catalysis of methane oxybromination.Among the prepared catalysts,Rh/SiO2 is the best in performance(CH4 conversion of ca.20%and CH3Br selectivity exceeding 70%).The results reveal that support type has a notable influence on the catalytic performance of Rh,especially on product distribution.The high selectivity to CH3 Br over Rh/SiO2 is attributed to its low propensity for CH3Br oxidation.It was found that Rh small in particle size shows high catalytic activity and CH3Br selectivity.Although silicalite-1 zeolite suffers from a certain degree of structural damage due to the presence of high temperature steam,the use of silicalite-1 as support results in a performance comparable to that of Rh/SiO2.展开更多
Rhodium-catalyzed cycloaddition reaction was calculated by density functional theory M06-2X method to directly synthesize benzoxepine and coumarin derivatives.In this work,we conducted a computational study of two com...Rhodium-catalyzed cycloaddition reaction was calculated by density functional theory M06-2X method to directly synthesize benzoxepine and coumarin derivatives.In this work,we conducted a computational study of two competitive mechanisms in which the carbon atom of acetylene or carbon monoxide attacked and inserted from two different directions of the six-membered ring reactant to clarify the principle characteristics of this transformation.The calculation results reveal that:(i)the insertion process of alkyne or carbon monoxide is the key step of the reaction;(ii)for the(5+2)cycloaddition reaction of acetylene,higher energy is required to break the Rh−O bond of the reactant,and the reaction tends to complete the insertion from the side of the Rh−C bond;(iii)for the(5+1)cycloaddition of carbon monoxide,both reaction paths have lower activation free energy,and the two will generate a competition mechanism.展开更多
Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater.Despite Rh bein...Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater.Despite Rh being expensive,only a few studies have examined its electrocatalytic mass activity.Herein,surface-limited cation exchange and electrochemical activation processes are designed to remarkably enhance the mass activity of Rh.Rh atoms were readily replaced at the Ni sites on the surface of NiOOH electrodes by cation exchange,and the resulting RhOOH compounds were activated by the electrochemical reduction process.The cation exchange-derived Rh catalysts exhibited particle sizes not exceeding 2 nm without agglomeration,indicating a decrease in the number of inactive inner Rh atoms.Consequently,an improved mass activity of 30 A mg_(Rh)^(-1)was achieved at 0.4 V versus reversible hydrogen electrode.Furthermore,the two-electrode system employing the same CE-derived Rh electrodes achieved overall hydrazine splitting over 36 h at a stable low voltage.The proposed surface-limited CE process is an effective method for reducing inactive atoms of expensive noble metal catalysts.展开更多
Four monodentate P-ligands and their mixtures(six groups of double-ligand systems,four groups of triple-ligand systems and one group of tetra-ligand system)were used with Rh(acac)(CO)2(acac=acetylacetonate)or...Four monodentate P-ligands and their mixtures(six groups of double-ligand systems,four groups of triple-ligand systems and one group of tetra-ligand system)were used with Rh(acac)(CO)2(acac=acetylacetonate)or Rh(acac)CO(PPh3)as the catalyst in the hydroformylation reaction of 1-butene.It was found that different Rh catalysts showed little difference in the catalysis performance.The general order of catalysis performance is doubleligand system 〉 single-ligand system〉triple-ligand system 〉 tetra-ligand system.Some synergistic effect in the double-ligand system was detected which needs a further investigation.展开更多
Acetic anhydride is the important organic chemical raw material, and is used widely in chemical industry,pharmaceutical industry, dyes, spices and other fields. In this paper, the process of carbonylation of methyl ac...Acetic anhydride is the important organic chemical raw material, and is used widely in chemical industry,pharmaceutical industry, dyes, spices and other fields. In this paper, the process of carbonylation of methyl acetate in rhodium iodine catalyst system was studied, and the suitable reaction conditions were determined.At the same time, the kinetic model was established. The optimum reaction conditions were as follows: the reaction pressure was 5 MPa, the hydrogen content was 8%, the amount of iodomethane was 15%, the amount of lithium iodide was 3%, the reaction temperature was 150 ℃ and the reaction time is 3 h. Under the above reaction conditions, the selectivity of the reaction is close to 100% and the conversion is as high as 92%. The macroscopic kinetic model of the reaction was established in the temperature range of 120 ℃–150 ℃. The reaction is an irreversible reaction without the formation of by-products and the dynamic equation is also given in the Conclusions section.展开更多
A simple and efficient process involving the Rh(II)-catalyzed[1+1+3]annulation of diazooxindoles and vinyl azides has been developed for the synthesis of spiropyrrolidine oxindoles with potential biological activity a...A simple and efficient process involving the Rh(II)-catalyzed[1+1+3]annulation of diazooxindoles and vinyl azides has been developed for the synthesis of spiropyrrolidine oxindoles with potential biological activity and significant synthetic applications.This process involves a novel rhodium-catalyzed olefination of diazo compounds,followed by annulation with vinyl azides.This method is compatible with a broad range of substrates and affords moderate to good yields under mild reaction conditions.展开更多
By using the famous Wilkinson's catalyst, N-alkylation of sulfonamides can be easily realized under mild aerobic conditions by using alcohols as the alkylating reagent, giving monoalkylated sulfonamides in high yield...By using the famous Wilkinson's catalyst, N-alkylation of sulfonamides can be easily realized under mild aerobic conditions by using alcohols as the alkylating reagent, giving monoalkylated sulfonamides in high yields and selectivities with water produced as the only byproduct. This advantageous aerobic method is potentially general in substrate scope that it can also be applied to other amides, amines and alcohols.展开更多
The first theoretical study on the mechanism of [RhCl(CO)2]2-catalyzed [5 + 1] cycloadditions of 3- acyloxy-1,4-enyne (ACE) and CO has been performed using density functional theory (DFT) calculations. The effe...The first theoretical study on the mechanism of [RhCl(CO)2]2-catalyzed [5 + 1] cycloadditions of 3- acyloxy-1,4-enyne (ACE) and CO has been performed using density functional theory (DFT) calculations. The effect of ester on reactivity of this reaction has been investigated. The computational results have revealed that the preferred catalytic cycle involves the sequential steps of 1,2-acyloxy migration, CO insertion, reductive elimination to form ketene intermediate, 6π-electroncyclization, and aromatization to afford the resorcinol product. The 1,2-acyloxy migration is found to be the rate-determining step of the catalytic cycle. The electron-rich p-dimethylaminobenzoate substrate promotes 1,2-acyloxy migration and significantly increases the reactivity by stabilizing the positive charge building up in the oxocyclic transition state.展开更多
文摘In this article, hydrogenation of benzene in liquid phase at presence rhodium support catalyst is considered, where as carrier is used pillar structural montmorillonite obtaining from bentonite clay. The degree of using an internal surface of porous system is depended of the size particles.
基金National Natural Science Foundation of China(No.20862008)Natural Science Foundation of Jiangxi Province(No.2008GQH0034) for financial support
文摘The hydrosilylation of alkenes with triethoxysilane has been achieved at 120 C in the presence of 0.01 mol%of thioetherfunctionalized MCM-41 anchored rhodium complex,affording the corresponding addition products in 68-91%yields.This supported rhodium complex can be reused several times without noticeable loss of activity.Our system not only solves the basic problems of catalyst separation and recovery,but also avoids the use of phosphine ligands.
文摘The promotion effect of cationic gemini surfactants for the hydroformylation of 1-dodecene in the organic/aqueous biphasic catalytic system is reported. The hydroformylation reaction in the presence of gemini surfactant occurred with higher turnover frequency and higher selectivity for linear aldehyde than using conventional monomeric surfactant CTAB.
基金financially supported by the National Natural Science Foundation of China(Nos.21725602,21776064,21671062 and 21476065)the Innovative Research Groups of Hunan Province(2019JJ10001)。
文摘Bromine mediation has been regarded as one of the most efficient ways to activate and convert methane to useful organics.This article reports the effects of active components(Rh,Ru,Pd and Pt)and supports(SiO2,Mg O and Al2O3)on the catalysis of methane oxybromination.Among the prepared catalysts,Rh/SiO2 is the best in performance(CH4 conversion of ca.20%and CH3Br selectivity exceeding 70%).The results reveal that support type has a notable influence on the catalytic performance of Rh,especially on product distribution.The high selectivity to CH3 Br over Rh/SiO2 is attributed to its low propensity for CH3Br oxidation.It was found that Rh small in particle size shows high catalytic activity and CH3Br selectivity.Although silicalite-1 zeolite suffers from a certain degree of structural damage due to the presence of high temperature steam,the use of silicalite-1 as support results in a performance comparable to that of Rh/SiO2.
基金This work was supported by the Natural Science Foundation of Gansu Province(20JR5RA479)the Outstanding Youth Research Program of Lanzhou University of Arts and Sciences(2018JCQN008).
文摘Rhodium-catalyzed cycloaddition reaction was calculated by density functional theory M06-2X method to directly synthesize benzoxepine and coumarin derivatives.In this work,we conducted a computational study of two competitive mechanisms in which the carbon atom of acetylene or carbon monoxide attacked and inserted from two different directions of the six-membered ring reactant to clarify the principle characteristics of this transformation.The calculation results reveal that:(i)the insertion process of alkyne or carbon monoxide is the key step of the reaction;(ii)for the(5+2)cycloaddition reaction of acetylene,higher energy is required to break the Rh−O bond of the reactant,and the reaction tends to complete the insertion from the side of the Rh−C bond;(iii)for the(5+1)cycloaddition of carbon monoxide,both reaction paths have lower activation free energy,and the two will generate a competition mechanism.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry ofEducation(2021R1A2C3011870 and 2019R1A6A1A03033215)the Korea Research Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(2020H1D3A1A04081323)
文摘Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater.Despite Rh being expensive,only a few studies have examined its electrocatalytic mass activity.Herein,surface-limited cation exchange and electrochemical activation processes are designed to remarkably enhance the mass activity of Rh.Rh atoms were readily replaced at the Ni sites on the surface of NiOOH electrodes by cation exchange,and the resulting RhOOH compounds were activated by the electrochemical reduction process.The cation exchange-derived Rh catalysts exhibited particle sizes not exceeding 2 nm without agglomeration,indicating a decrease in the number of inactive inner Rh atoms.Consequently,an improved mass activity of 30 A mg_(Rh)^(-1)was achieved at 0.4 V versus reversible hydrogen electrode.Furthermore,the two-electrode system employing the same CE-derived Rh electrodes achieved overall hydrazine splitting over 36 h at a stable low voltage.The proposed surface-limited CE process is an effective method for reducing inactive atoms of expensive noble metal catalysts.
基金Supported by the National Natural Science Foundation of China(21306227)the Science Foundation of China University of Petroleum,Beijing(C201604)
文摘Four monodentate P-ligands and their mixtures(six groups of double-ligand systems,four groups of triple-ligand systems and one group of tetra-ligand system)were used with Rh(acac)(CO)2(acac=acetylacetonate)or Rh(acac)CO(PPh3)as the catalyst in the hydroformylation reaction of 1-butene.It was found that different Rh catalysts showed little difference in the catalysis performance.The general order of catalysis performance is doubleligand system 〉 single-ligand system〉triple-ligand system 〉 tetra-ligand system.Some synergistic effect in the double-ligand system was detected which needs a further investigation.
文摘Acetic anhydride is the important organic chemical raw material, and is used widely in chemical industry,pharmaceutical industry, dyes, spices and other fields. In this paper, the process of carbonylation of methyl acetate in rhodium iodine catalyst system was studied, and the suitable reaction conditions were determined.At the same time, the kinetic model was established. The optimum reaction conditions were as follows: the reaction pressure was 5 MPa, the hydrogen content was 8%, the amount of iodomethane was 15%, the amount of lithium iodide was 3%, the reaction temperature was 150 ℃ and the reaction time is 3 h. Under the above reaction conditions, the selectivity of the reaction is close to 100% and the conversion is as high as 92%. The macroscopic kinetic model of the reaction was established in the temperature range of 120 ℃–150 ℃. The reaction is an irreversible reaction without the formation of by-products and the dynamic equation is also given in the Conclusions section.
基金supported by the National Natural Science Foundation of China(21572225)~~
文摘A simple and efficient process involving the Rh(II)-catalyzed[1+1+3]annulation of diazooxindoles and vinyl azides has been developed for the synthesis of spiropyrrolidine oxindoles with potential biological activity and significant synthetic applications.This process involves a novel rhodium-catalyzed olefination of diazo compounds,followed by annulation with vinyl azides.This method is compatible with a broad range of substrates and affords moderate to good yields under mild reaction conditions.
基金the National Natural Science Foundation of China(No.20902070)Natural Science Foundation of Zhejiang Province(No.Y4100579)Qianjiang Talents Program(No.QJD0902004) of Zhejiang Province for financial supports
文摘By using the famous Wilkinson's catalyst, N-alkylation of sulfonamides can be easily realized under mild aerobic conditions by using alcohols as the alkylating reagent, giving monoalkylated sulfonamides in high yields and selectivities with water produced as the only byproduct. This advantageous aerobic method is potentially general in substrate scope that it can also be applied to other amides, amines and alcohols.
基金Tianjin Natural Science Foundation (No.14JCYBJC20100 X.X.)MOE Innovation Teams (Nos.IRT-13R30 and IRT13022) of ChinaNIH (No.R01GM088285 W.T.) for financial support
文摘The first theoretical study on the mechanism of [RhCl(CO)2]2-catalyzed [5 + 1] cycloadditions of 3- acyloxy-1,4-enyne (ACE) and CO has been performed using density functional theory (DFT) calculations. The effect of ester on reactivity of this reaction has been investigated. The computational results have revealed that the preferred catalytic cycle involves the sequential steps of 1,2-acyloxy migration, CO insertion, reductive elimination to form ketene intermediate, 6π-electroncyclization, and aromatization to afford the resorcinol product. The 1,2-acyloxy migration is found to be the rate-determining step of the catalytic cycle. The electron-rich p-dimethylaminobenzoate substrate promotes 1,2-acyloxy migration and significantly increases the reactivity by stabilizing the positive charge building up in the oxocyclic transition state.