Rhombus thinking, a new creative thinking method,is the combination of divergent thinking process and convergent thinking process,in which qualitative analysis is carried out before quantitative analysis This method...Rhombus thinking, a new creative thinking method,is the combination of divergent thinking process and convergent thinking process,in which qualitative analysis is carried out before quantitative analysis This method tries to solve the bottle neck problem in intelligent CAD based on the extension theory The rhombus thinking method to the scheme design of new products is applied In this process, firstly, the matter element expression for the know information are set up, and then a set of matter elements are opened up by matter elements extension method; Finally,the useful information are got by appraisal method of dependent degree It has been successfully applied to the scheme design for the cutter store of machining center Theoretical and experimental results demonstrated fhat the method is much more accurate,objective and efficient than the traditional one展开更多
Hybrid square/rhombus-rectangular lasers(HSRRLs) consisting of a Fabry–Perot(FP) cavity and a square/rhombus microcavity(SRM) are proposed and demonstrated for realizing single-mode lasing with a wide wavelength tuni...Hybrid square/rhombus-rectangular lasers(HSRRLs) consisting of a Fabry–Perot(FP) cavity and a square/rhombus microcavity(SRM) are proposed and demonstrated for realizing single-mode lasing with a wide wavelength tuning range. The SRM is a deformed square microcavity with a vertex extended to the FP cavity to control the coupled mode field pattern in the FP cavity. Single-mode operation with a side-mode suppression ratio(SMSR) over 45.3 dB is realized, and a wide wavelength tuning range of 21 nm with SMSR >35 dB is further demonstrated by adjusting the injection currents of the SRM and the FP cavity simultaneously. Furthermore, a 3-dB modulation bandwidth of 14.1 GHz and an open-eye diagram at 35 Gb/s are demonstrated for the HSRRL.展开更多
Beam scanning and forming can be achieved by coupled oscillators array without phase shifter. Active antenna array based on coupled oscillators array has the virtue of low cost, high integration, and high efficiency. ...Beam scanning and forming can be achieved by coupled oscillators array without phase shifter. Active antenna array based on coupled oscillators array has the virtue of low cost, high integration, and high efficiency. Traditional two dimensional coupled oscillators array has been arranged on rectangular lattices, and phase difference of adjacent elements is limited to [-90°, 90°]. Therefore, the beam scanning range is limited to [-30°, 30°] from normal for half wavelength element spacing. A new two dimensional coupled oscillators array with rhombus structure is presented. Phase control method and phase error of the array are also provided. Stability of the array is analyzed, and stable condition is given. When this coupled oscillators array with rhombus structure is used in active antenna array, theoretical results show that phase difference of adjacent elements reach the limit of [-180°, 180°] along the horizontal and vertical directions. Therefore, it has wider beam scanning range than that of a rectangular lattice structure.展开更多
This paper presents a real rough sets space and corresponding concepts of real lower and upper approximation sets which correspond to the real-valued attributes. Therefore, the real rough sets space can be investigate...This paper presents a real rough sets space and corresponding concepts of real lower and upper approximation sets which correspond to the real-valued attributes. Therefore, the real rough sets space can be investigated directly. A rhombus neighborhood for SOM is proposed, and the combination of SOM and rough sets theory is explored. According to the distance between the weight of winner node and the input vector in the real rough sets space, new weight learning rules are defined. The modified method makes the classification of the output of SOM clearer and the intervals of different classes larger. Finally, an example based on fault identification of an aircraft actuator is presented, The result of the simulation shows that this method is right and effective.展开更多
The purpose of shipping risk early-warning is that some effective measures are taken to reduce risk probability before the risk brings heavy loss.The shipping risk has the dynamic characteristic,so the key of early-wa...The purpose of shipping risk early-warning is that some effective measures are taken to reduce risk probability before the risk brings heavy loss.The shipping risk has the dynamic characteristic,so the key of early-warning is to choice risk early-warning index correctly and evaluate risk grade quantitatively.According to the element extension theory,the rhombus inference model is applied to establish the index system.And the problem of risk grade evaluation can be solved by the assessment model of multi-index performance parameter,which is developed by the extension engineering method.Finally,the main shipping risks and their grades are identified by the example analysis based on the statistical data,which shows the effective and feasible of the shipping risk early-warning method.展开更多
In supersonic wind tunnels, the airflow at the exit of a convergent-divergent nozzle is affected by the connection between the nozzle and test section, because the connection is a source of disturbance for supersonic ...In supersonic wind tunnels, the airflow at the exit of a convergent-divergent nozzle is affected by the connection between the nozzle and test section, because the connection is a source of disturbance for supersonic flow and the source of disturbance generated by this disturbance propagates downstream. In order to avoid the disturbance, the test can only be carried out in the rhombus area. However, for the supersonic nozzle, the rhombus region is small, limiting the size and attitude angle of the test model. An integrated supersonic nozzle is a nozzle and a test section as a whole, which is designed to weaken or eliminate the disturbance. The inviscid contour of the supersonic nozzle is based on the method of characteristics. A new curve is formed by the smooth connection between the inviscid contour and test section, and the boundary layer is corrected for the overall curve. Integrated supersonic nozzles with Mach number 1.5 and 2 are designed, which are based on this method. The flow field is validated by numerical and experimental results. The results of the study highlight the importance of the connection about the nozzle outlet and test section. They clearly show that the wave system does not exist at the exit of the supersonic nozzle, and the flow field is uniform throughout the test section.展开更多
Integrated multilayered triboelectric nanogenerators (TENGs) are an efficient approach to solve the insufficient energy problem caused by a single-layered TENG for achieving high output power density. However, most ...Integrated multilayered triboelectric nanogenerators (TENGs) are an efficient approach to solve the insufficient energy problem caused by a single-layered TENG for achieving high output power density. However, most integrated multilayered TENGs have a relatively large volume. Here, a double-induced-mode integrated triboelectric nanogenerator (DI-TENG) based on spring steel plates is presented as a cost-effective, simple, and high-performance device for ambient vibration energy harvesting. The unique stackable rhombus structure, in which spring steel plates act both as skeletons and as electrodes, can enhance the output performance and maximize space utilization. The DI-TENG with five repeated units in a volume of 12 cm × 5 cm × 0.4 cm can generate a short-circuit current of 51 μA and can transfer charges of 1.25 μC in a half period. The contrast experiment is conducted systematically and the results have proved that the DI-TENG has a great advantage over the single-induced-mode TENG (SI-TENG) with only one side of a friction layer on its electrode. Besides, the DI-TENG can easily power a commercial calculator and can be used as a door switch sensor.展开更多
The magnetic impacts upon the transport of heat and mass of an electrically conducting nanofluid within an annulus among an inner rhombus with convex and outer cavity with periodic temperature/concentration profiles o...The magnetic impacts upon the transport of heat and mass of an electrically conducting nanofluid within an annulus among an inner rhombus with convex and outer cavity with periodic temperature/concentration profiles on its left wall are assessed by the ISPH method.The right wall has Tcand C,cflat walls are adiabatic,and the temperature and concentration of the left wall are altered sinusoidally with time.The features of the heat and mass transfer and fluid flow through an annulus are assessed across a wide scale of Hartmann number Ha,Soret number Sr,oscillation amplitude A,Dufour number Du,nanoparticles parameterΦ,oscillation frequency f,Rayleigh number Ra,and radius of a superellipse a at Lewis number Le=20,magnetic field’s angle g=45°,Prandtl number Pr=6.2,a superellipse coefficient n=3/2,and buoyancy parameter N=1.The results reveal that the velocity’s maximum reduces by 70.93%as Ha boosts from 0 to 50,and by 66.24%as coefficient a boosts from 0.1 to 0.4.Whilst the velocity’s maximum augments by 83.04%as Sr increases from 0.6 to 2 plus a decrease in Du from 1 to0.03.The oscillation amplitude A,and frequency f are significantly affecting the nanofluid speed,and heat and mass transfer inside an annulus.Increasing the parameters A and f is augmenting the values of mean Nusselt number-(Sh)and mean Sherwood number^-(Nu).Increasing the radius of a superellipse a enhances the values of^(Nu)and^(Sh).展开更多
The two-orbital Hubbard model is studied numerically by using the Hartree-Fock approximation in both real space and momentum space, and the ground-state properties of the alkali metal iron selenide semiconducting KFel...The two-orbital Hubbard model is studied numerically by using the Hartree-Fock approximation in both real space and momentum space, and the ground-state properties of the alkali metal iron selenide semiconducting KFel.5Se2 are investigated. A rhombus-type Fe vacancy order with stripe- type antiferromagnetic (AFM) order is found, as was observed in neutron scattering experiments [J. Zhao, et al., Phys. Rev. Lett. 109, 267003 (2012)]. Hopping parameters are obtained by fitting the experimentally observed stripe AFM phase in real space. These hopping parameters are then used to study the ground-state properties of the semiconductor in momentum space. It is found to be a strongly correlated system with a large on-site Coulomb repulsion U, similar to the AFM Mort insulator -- the parent compound of copper oxide superconductors. We also find that the electronic occupation numbers and magnetizations in the dxz and dyz orbitals become different simultaneously when U 〉 Uc (~3.4 eV), indicating orbital ordering. These results imply that the rotational symmetry between the two orbitals is broken by orbital ordering and thus drives the strong anisotropy of the magnetic coupling that has been observed by experiments and that the stripe-type AFM order in this compound may be caused by orbital ordering together with the observed large anisotropy.展开更多
文摘Rhombus thinking, a new creative thinking method,is the combination of divergent thinking process and convergent thinking process,in which qualitative analysis is carried out before quantitative analysis This method tries to solve the bottle neck problem in intelligent CAD based on the extension theory The rhombus thinking method to the scheme design of new products is applied In this process, firstly, the matter element expression for the know information are set up, and then a set of matter elements are opened up by matter elements extension method; Finally,the useful information are got by appraisal method of dependent degree It has been successfully applied to the scheme design for the cutter store of machining center Theoretical and experimental results demonstrated fhat the method is much more accurate,objective and efficient than the traditional one
基金National Natural Science Foundation of China(NSFC)(11704375,61527823,61875188)
文摘Hybrid square/rhombus-rectangular lasers(HSRRLs) consisting of a Fabry–Perot(FP) cavity and a square/rhombus microcavity(SRM) are proposed and demonstrated for realizing single-mode lasing with a wide wavelength tuning range. The SRM is a deformed square microcavity with a vertex extended to the FP cavity to control the coupled mode field pattern in the FP cavity. Single-mode operation with a side-mode suppression ratio(SMSR) over 45.3 dB is realized, and a wide wavelength tuning range of 21 nm with SMSR >35 dB is further demonstrated by adjusting the injection currents of the SRM and the FP cavity simultaneously. Furthermore, a 3-dB modulation bandwidth of 14.1 GHz and an open-eye diagram at 35 Gb/s are demonstrated for the HSRRL.
文摘Beam scanning and forming can be achieved by coupled oscillators array without phase shifter. Active antenna array based on coupled oscillators array has the virtue of low cost, high integration, and high efficiency. Traditional two dimensional coupled oscillators array has been arranged on rectangular lattices, and phase difference of adjacent elements is limited to [-90°, 90°]. Therefore, the beam scanning range is limited to [-30°, 30°] from normal for half wavelength element spacing. A new two dimensional coupled oscillators array with rhombus structure is presented. Phase control method and phase error of the array are also provided. Stability of the array is analyzed, and stable condition is given. When this coupled oscillators array with rhombus structure is used in active antenna array, theoretical results show that phase difference of adjacent elements reach the limit of [-180°, 180°] along the horizontal and vertical directions. Therefore, it has wider beam scanning range than that of a rectangular lattice structure.
文摘This paper presents a real rough sets space and corresponding concepts of real lower and upper approximation sets which correspond to the real-valued attributes. Therefore, the real rough sets space can be investigated directly. A rhombus neighborhood for SOM is proposed, and the combination of SOM and rough sets theory is explored. According to the distance between the weight of winner node and the input vector in the real rough sets space, new weight learning rules are defined. The modified method makes the classification of the output of SOM clearer and the intervals of different classes larger. Finally, an example based on fault identification of an aircraft actuator is presented, The result of the simulation shows that this method is right and effective.
基金the Natural Science Foundation of Tianjin (No.07JCYBJC13100)
文摘The purpose of shipping risk early-warning is that some effective measures are taken to reduce risk probability before the risk brings heavy loss.The shipping risk has the dynamic characteristic,so the key of early-warning is to choice risk early-warning index correctly and evaluate risk grade quantitatively.According to the element extension theory,the rhombus inference model is applied to establish the index system.And the problem of risk grade evaluation can be solved by the assessment model of multi-index performance parameter,which is developed by the extension engineering method.Finally,the main shipping risks and their grades are identified by the example analysis based on the statistical data,which shows the effective and feasible of the shipping risk early-warning method.
基金supported by Supersonic Laboratory of CAAANational Nature Science Foundation of China (Nos.11672283, 11872349)
文摘In supersonic wind tunnels, the airflow at the exit of a convergent-divergent nozzle is affected by the connection between the nozzle and test section, because the connection is a source of disturbance for supersonic flow and the source of disturbance generated by this disturbance propagates downstream. In order to avoid the disturbance, the test can only be carried out in the rhombus area. However, for the supersonic nozzle, the rhombus region is small, limiting the size and attitude angle of the test model. An integrated supersonic nozzle is a nozzle and a test section as a whole, which is designed to weaken or eliminate the disturbance. The inviscid contour of the supersonic nozzle is based on the method of characteristics. A new curve is formed by the smooth connection between the inviscid contour and test section, and the boundary layer is corrected for the overall curve. Integrated supersonic nozzles with Mach number 1.5 and 2 are designed, which are based on this method. The flow field is validated by numerical and experimental results. The results of the study highlight the importance of the connection about the nozzle outlet and test section. They clearly show that the wave system does not exist at the exit of the supersonic nozzle, and the flow field is uniform throughout the test section.
基金This work is supported by National Natural Science Foundation of China (Nos. 51572040 and 51402112), Chongqing University Postgraduates' Innovation Project (No. CYS15016), the Fundamental Research Funds for the Central Universities (Nos. CQDXWL-2014-001 and CQDXWL-2013-012), and the National High-tech R&D Program of China (863 program) (No 2015AA034801).
文摘Integrated multilayered triboelectric nanogenerators (TENGs) are an efficient approach to solve the insufficient energy problem caused by a single-layered TENG for achieving high output power density. However, most integrated multilayered TENGs have a relatively large volume. Here, a double-induced-mode integrated triboelectric nanogenerator (DI-TENG) based on spring steel plates is presented as a cost-effective, simple, and high-performance device for ambient vibration energy harvesting. The unique stackable rhombus structure, in which spring steel plates act both as skeletons and as electrodes, can enhance the output performance and maximize space utilization. The DI-TENG with five repeated units in a volume of 12 cm × 5 cm × 0.4 cm can generate a short-circuit current of 51 μA and can transfer charges of 1.25 μC in a half period. The contrast experiment is conducted systematically and the results have proved that the DI-TENG has a great advantage over the single-induced-mode TENG (SI-TENG) with only one side of a friction layer on its electrode. Besides, the DI-TENG can easily power a commercial calculator and can be used as a door switch sensor.
基金the Deanship of Scientific Research at King Khalid University,Abha,Saudi Arabia,for funding this work through the Research Group Project under Grant Number(RGP.2/144/42)funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program。
文摘The magnetic impacts upon the transport of heat and mass of an electrically conducting nanofluid within an annulus among an inner rhombus with convex and outer cavity with periodic temperature/concentration profiles on its left wall are assessed by the ISPH method.The right wall has Tcand C,cflat walls are adiabatic,and the temperature and concentration of the left wall are altered sinusoidally with time.The features of the heat and mass transfer and fluid flow through an annulus are assessed across a wide scale of Hartmann number Ha,Soret number Sr,oscillation amplitude A,Dufour number Du,nanoparticles parameterΦ,oscillation frequency f,Rayleigh number Ra,and radius of a superellipse a at Lewis number Le=20,magnetic field’s angle g=45°,Prandtl number Pr=6.2,a superellipse coefficient n=3/2,and buoyancy parameter N=1.The results reveal that the velocity’s maximum reduces by 70.93%as Ha boosts from 0 to 50,and by 66.24%as coefficient a boosts from 0.1 to 0.4.Whilst the velocity’s maximum augments by 83.04%as Sr increases from 0.6 to 2 plus a decrease in Du from 1 to0.03.The oscillation amplitude A,and frequency f are significantly affecting the nanofluid speed,and heat and mass transfer inside an annulus.Increasing the parameters A and f is augmenting the values of mean Nusselt number-(Sh)and mean Sherwood number^-(Nu).Increasing the radius of a superellipse a enhances the values of^(Nu)and^(Sh).
文摘The two-orbital Hubbard model is studied numerically by using the Hartree-Fock approximation in both real space and momentum space, and the ground-state properties of the alkali metal iron selenide semiconducting KFel.5Se2 are investigated. A rhombus-type Fe vacancy order with stripe- type antiferromagnetic (AFM) order is found, as was observed in neutron scattering experiments [J. Zhao, et al., Phys. Rev. Lett. 109, 267003 (2012)]. Hopping parameters are obtained by fitting the experimentally observed stripe AFM phase in real space. These hopping parameters are then used to study the ground-state properties of the semiconductor in momentum space. It is found to be a strongly correlated system with a large on-site Coulomb repulsion U, similar to the AFM Mort insulator -- the parent compound of copper oxide superconductors. We also find that the electronic occupation numbers and magnetizations in the dxz and dyz orbitals become different simultaneously when U 〉 Uc (~3.4 eV), indicating orbital ordering. These results imply that the rotational symmetry between the two orbitals is broken by orbital ordering and thus drives the strong anisotropy of the magnetic coupling that has been observed by experiments and that the stripe-type AFM order in this compound may be caused by orbital ordering together with the observed large anisotropy.