期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Geochemistry and zircon U-Pb geochronology of the rhyolitic tuff on Port Island, Hong Kong: Implications for early Cretaceous tectonic setting 被引量:4
1
作者 Longlong Zhao Lulin Wang +1 位作者 Mingzhong Tian Fadong Wu 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第3期565-581,共17页
Early Cretaceous rhyolitic tuffs, widely distributed on Port Island, provide insights into the volcanism and tectonic setting of Hong Kong. In this paper we present petrological, geochronological and geochemical data ... Early Cretaceous rhyolitic tuffs, widely distributed on Port Island, provide insights into the volcanism and tectonic setting of Hong Kong. In this paper we present petrological, geochronological and geochemical data of the rhyolitic tuff to constrain the diagenesis age and petrogenesis of the rocks, tectonic setting and early Cretaceous volcanism of Hong Kong. The first geochronological data show that the zircons in the volcanic rocks have U-Pb age of 141.1-139.5 Ma, which reveals that the rhyolitic tuff on Port Island was formed in the early Cretaceous (K1). Geochemically, these acid rocks, which are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs), belong to the high K calc-alkaline to shoshonite series with strongly-peraluminous characteristic. The geochemical analyses suggest that the volcanic rocks were derived from deep melting in the continental crust caused by basaltic magma underplating. Based on the geochemical analysis and previous studies, we concluded that the rhyolitic tufts on Port Island were formed in a back- arc extension setting in response to the subduction of the Paleo-Pacific Plate beneath the Eurasian Plate. 展开更多
关键词 Geochemistry Geochronology rhyolitic tuff Petrogenesis Tectonic setting Hong Kong
下载PDF
Late Cretaceous K-rich rhyolitic crystal tuffs from the Chuduoqu area in Eastern Qiangtang subterrane:evidence for crustal thickening of the central Tibetan Plateau prior to India–Asia collision
2
作者 Yonggang Sun Bile Li +5 位作者 Fengyue Sun Qingfeng Ding Junlin Dong Ye Qian Yujin Li Zhen Yao 《Acta Geochimica》 EI CAS CSCD 2022年第1期147-163,共17页
In order to constrain whether the Lhasa–Qiangtang collision contributed to an early crustal thickening of the central Tibetan Plateau prior to the India–Asia collision,we present zircon LA–ICP–MS U–Pb ages,wholer... In order to constrain whether the Lhasa–Qiangtang collision contributed to an early crustal thickening of the central Tibetan Plateau prior to the India–Asia collision,we present zircon LA–ICP–MS U–Pb ages,wholerock geochemistry,and zircon Hf isotopic compositions of the newly discovered rhyolitic crystal tuffs from the Chuduoqu area in the eastern Qiangtang subterrane,central Tibet.Zircon U–Pb dating suggests that the Chuduoqu rhyolitic crystal tuffs were emplaced at ca.68 Ma.The Chuoduoqu rhyolitic crystal tuffs display high SiO_(2) and K2 O,and low MgO,Cr,and Ni.Combined with their zircon Hf isotopic data,we suggest that they were derived from partial melting of the juvenile lower crust,and the magma underwent fractional crystallization and limited upper continental crustal assimilation during its evolution prior to eruption.They should be formed in a post-collisional environment related to lithospheric mantle delamination.The Chuduoqu rhyolitic crystal tuffs could provide important constraints on the Late Cretaceous crustal thickening of the central Tibetan Plateau caused by the Lhasa–Qiangtang collision. 展开更多
关键词 rhyolitic crystal tuffs Late Cretaceous Crustal thickening Lhasa-Qiangtang collision Central Tibetan Plateau
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部