This study deals with base pressure management in a duct for various values of the Mach number(M),namely,Mach number corresponding to sonic and four supersonic conditions.In addition to the Mach number,the nozzle pres...This study deals with base pressure management in a duct for various values of the Mach number(M),namely,Mach number corresponding to sonic and four supersonic conditions.In addition to the Mach number,the nozzle pressure ratio(NPR),the area ratio,the rib dimension,and the duct length are influential parameters.The following specific values are examined at M=1,1.36,1.64,and 2,and NPRs between 1.5 and 10.The base pressure is determined by positioning ribs of varying heights at predetermined intervals throughout the length of the square duct.When the level of expansion is varied,it is seen that the base pressure initially drops for overexpanded flows and increases for under-expanded flows.When ribs are present,the flow field in the duct and pressure inside the duct fluctuate as the base pressure rises.Under-expanded flows can achieve a base pressure value that is suitably high without experiencing excessive changes in the duct flow in terms of static pressure if a rib height around 10%of the duct height close to the nozzle exit is considered.Rectangular rib passive control does not negatively affect the duct’s flow field.展开更多
Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,si...Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,side preference,operation mode,cutting methods,and handling of the periosteum and perichondrium.This study aimed to provide an overview of the novel techniques used for auto-rib harvesting in rhinoplasty within the past 5 years and identify potential avenues for future research.Methods:We searched for related articles in PubMed,Embase,and Web of Science from 2019 to 2023,summa-rized crucial but controversial steps in recent practice,and analyzed their theoretical basis and clinical feasibility.Results:Auto-rib and cartilage open harvest is still mainstream in rhinoplasty and reconstruction,with the 5th to 8th ribs and cartilage being the most used.The laparoscopic harvest is gaining attention,being second only to the open harvest,with the 9th/10th ribs and cartilages being particularly convenient.The clinical applications of full-cut and split-cut methods differ in their advantages.Except for some special reasons,almost all studies tended to preserve the periosteum and perichondrium in situ,and few surgeons chose to harvest the grafts on the left side.Conclusion:Multiple techniques have emerged,requiring surgeons to balance the benefits and risks of various strategies at each step.New theories and techniques should be fully tested promptly and in clinical practice before wide application.Overall,a professional consensus is needed for better directivity,precision,and stability in clinical practice.展开更多
In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by con...In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.展开更多
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ...Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.展开更多
In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for weld...In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.展开更多
Background: Costal fracture surgical is still a debate, therefore we shall select between early and delay surgical management. Case Report: We are reporting two cases of post road traffic clash delay ribs fractures os...Background: Costal fracture surgical is still a debate, therefore we shall select between early and delay surgical management. Case Report: We are reporting two cases of post road traffic clash delay ribs fractures osteosynthesis involving a 63-year-old man with multistage fractures on the left and pulmonary pinning of one of the costal arches, complicated by a homolateral haemothorax and a 41-year-old man with a bilateral flail chest. Conclusion: The simple postoperative course and the immediate postoperative improvement in the patient’s clinical respiratory condition enabled us to discuss the time frame for management, in this case the indication for early or later surgery.展开更多
Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Su...Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.展开更多
The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,consid...The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,considering the substructure made of reinforced concrete rigid frame and the space truss working together.Also,the anti-seismic characteristic of the wave-shaped space truss is studied based on the integral model.展开更多
The heat transfer and pressure loss characteristics on a square channel with two opposite surfaces roughened by high blockage ratio ribs are measured by systematic experiments.Reynolds numbers studied in the channel r...The heat transfer and pressure loss characteristics on a square channel with two opposite surfaces roughened by high blockage ratio ribs are measured by systematic experiments.Reynolds numbers studied in the channel range from 1 400 to 8 000.The ratios of rib height to hydraulic diameter (e/D) are 0.2and 0.33,respectively.The ratio of rib spacing to height (P/e) ranges from 5to 15.The rib orientations in the opposite surfaces are symmetrical and staggered arrangements.The results show that the heat transfer coefficients are increased with the increase of rib height and Reynolds number,though at the cost of higher pressure losses.When the rib spacing to height ratio is 10,it keeps the highest heat transfer coefficient in three kinds of rib spacing to height ratios 5,10 and 15.The heat transfer coefficient of symmetrical arrangement ribs is higher than that of the staggered arrangement ribs,but the pressure loss of the symmetrical arrangement ribs is larger than that of the staggered arrangement ribs.展开更多
Background:Early diagnosis and classification of infections increase the cure rate while decreasing complications,which is significant for severe infections,especially for war surgery.However,traditional methods rely ...Background:Early diagnosis and classification of infections increase the cure rate while decreasing complications,which is significant for severe infections,especially for war surgery.However,traditional methods rely on laborious operations and bulky devices.On the other hand,point-of-care(POC)methods suffer from limited robustness and accuracy.Therefore,it is of urgent demand to develop POC devices for rapid and accurate diagnosis of infections to fulfill on-site militarized requirements.Methods:We developed a wave-shaped microfluidic chip(WMC)assisted multiplexed detection platform(WMC-MDP).WMC-MDP reduces detection time and improves repeatability through premixing of the samples and reaction of the reagents.We further combined the detection platform with the streptavidin–biotin(SA-B)amplified system to enhance the sensitivity while using chemiluminescence(CL)intensity as signal readout.We realized simultaneous detection of C-reactive protein(CRP),procalcitonin(PCT),and interleukin-6(IL-6)on the detection platform and evaluated the sensitivity,linear range,selectivity,and repeatability.Finally,we finished detecting 15 samples from volunteers and compared the results with commercial ELISA kits.Results:Detection of CRP,PCT,and IL-6 exhibited good linear relationships between CL intensities and concentrations in the range of 1.25–40μg/ml,0.4–12.8 ng/ml,and 50–1600 pg/ml,respectively.The limit of detection of CRP,PCT,and IL-6 were 0.54μg/ml,0.11 ng/ml,and 16.25 pg/ml,respectively.WMC-MDP is capable of good adequate selectivity and repeatability.The whole detection procedure takes only 22 min that meets the requirements of a POC device.Results of 15 samples from volunteers were consistent with the results detected by commercial ELISA kits.Conclusions:WMC-MDP allows simultaneous,rapid,and sensitive detection of CRP,PCT,and IL-6 with satisfactory selectivity and repeatability,requiring minimal manipulation.However,WMC-MDP takes advantage of being a microfluidic device showing the coefficients of variation less than 10%enabling WMC-MDP to be a type of point-of-care testing(POCT).Therefore,WMC-MDP provides a promising alternative to POCT of multiple biomarkers.We believe the practical application of WMC-MDP in militarized fields will revolutionize infection diagnosis for soldiers.展开更多
Stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor is a new-style hollow girderless floor system. Model experimental researches of simply-supported floor and four-corners bearing floor ha...Stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor is a new-style hollow girderless floor system. Model experimental researches of simply-supported floor and four-corners bearing floor have been done on this new kind of floor system in this paper. The experiment results show that the floor system has good mechanical property such as high bearing capacity, big rigidity and good tensility. A theoretical method is presented in this paper that the stiffening-ribbed-hollow-pipe girderless floor can be analyzed by being converted equivalently to orthotropic solid slab. It is indicated that the method is correct and reasonable according to the contrast between theoretical calculated results and experimental measured results. The theoretical results coincide with the measured results well.展开更多
Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch an...Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.展开更多
In current numerical study,forced flow and heat transfer of water/NDG(Nitrogen-doped graphene)nanofluid in nanoparticles mass fractions(φ)of 0,2%and 4%at Reynolds numbers(Re)of 10,50,100 and 150 are simulated in stea...In current numerical study,forced flow and heat transfer of water/NDG(Nitrogen-doped graphene)nanofluid in nanoparticles mass fractions(φ)of 0,2%and 4%at Reynolds numbers(Re)of 10,50,100 and 150 are simulated in steady states.Studied geometry is a two-dimensional microchannel under the influence of nanofluid jet injection.Temperature of inlet fluid equals with Tc=293 K and hot source of microchannel is under the influence of oscillating heat flux.Also,in this research,the effect of the variations of attack angle of triangular rib(15°,30°,45°and 60°)on laminar nanofluid flow behavior inside the studied rectangular geometry with the ratio of L/H=28 and nanofluid jet injection is investigated.Obtained results indicate that the increase of Reynolds number,nanoparticles mass fraction and attack angle of rib leads to the increase of pressure drop.By increasing fluid viscosity,momentum depreciation of fluid in collusion with microchannel surfaces enhances.Also,the increase of attack angle of rib at higher Reynolds numbers has a great effect on this coefficient.At low Reynolds numbers,due to slow motion of fluid,variations of attack angle of rib,especially in angles of 30°,45°and 60°are almost similar.By increasing fluid velocity,the effect of the variations of attack angle on pressure drop becomes significant and pressure drop figures act differently.In general,by using heat transfer enhancement methods in studied geometry,heat transfer increases almost 25%.展开更多
The influence of different conditions on ribbed towel gourd seed germination was tested in this paper. Results showed that the seeds germinating energy and germination percentage were increased evidently under the tre...The influence of different conditions on ribbed towel gourd seed germination was tested in this paper. Results showed that the seeds germinating energy and germination percentage were increased evidently under the treatment of dipping in normal water temperature for 4 hours and drying out for 1 hour at 30℃.展开更多
Using the upper bound element technique (UBET), a numerical model was proposed for analyzing the metal deformation behavior in the extrusion process of ribbed thin wall pipes through a porthole die. Optimization param...Using the upper bound element technique (UBET), a numerical model was proposed for analyzing the metal deformation behavior in the extrusion process of ribbed thin wall pipes through a porthole die. Optimization parameters were contained in the numerical model and determined through minimizing the total work of metal deformation. Taking the extrusion process of thin wall pipe with one rib as an example, the calculated results using the proposed model are as follows: the extrusion pressure p is linearly related to the extrusion ratio R by p = a+bR 0.683 , where a = 14.13, b = 0.911. When the length of the billet remaining in container is shorter than a quarter of the container diameter, the plastic region extends over the whole of the remained billet and the extrusion process reaches the state of funnel deformation. There exists an optimum depth of welding chamber in respect of the extrusion pressure, and to the calculated example the optimum depth is about 10% of the circumscribed diameter of portholes. To obtain more equitable metal flow in welding chamber, it is required to make the dividing planes in container to be consistent with corresponding welding planes in the chamber ( θ max i = θ′ max i ) through choosing different entering area for each of the portholes.展开更多
The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ ass...The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ assembly,segmental lifting,incremental launching and longitudinal moving,and vertical rotation.The temporary structural designs,process methods,and technological equipment for each construction scheme are described in detail.The advantages and disadvantages of each scheme and its application scope under various conditions are analyzed,and opinions and suggestions for guiding the application of each scheme are proposed.The comparison and selection analyses show that the four arch rib construction schemes have certain applicability under different conditions such as bridge site status,bridge span,and construction environment.With the continuous increase of bridge span and progress of construction technological equipment,the arch rib construction technology is developing towards the overall erection direction.This leads to more obvious technical advantages of the segmental lifting method,incremental launching and longitudinal moving method,and vertical rotation method.Therefore,it is necessary to select the best construction scheme according to the construction status and technical conditions during application.展开更多
文摘This study deals with base pressure management in a duct for various values of the Mach number(M),namely,Mach number corresponding to sonic and four supersonic conditions.In addition to the Mach number,the nozzle pressure ratio(NPR),the area ratio,the rib dimension,and the duct length are influential parameters.The following specific values are examined at M=1,1.36,1.64,and 2,and NPRs between 1.5 and 10.The base pressure is determined by positioning ribs of varying heights at predetermined intervals throughout the length of the square duct.When the level of expansion is varied,it is seen that the base pressure initially drops for overexpanded flows and increases for under-expanded flows.When ribs are present,the flow field in the duct and pressure inside the duct fluctuate as the base pressure rises.Under-expanded flows can achieve a base pressure value that is suitably high without experiencing excessive changes in the duct flow in terms of static pressure if a rib height around 10%of the duct height close to the nozzle exit is considered.Rectangular rib passive control does not negatively affect the duct’s flow field.
文摘Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,side preference,operation mode,cutting methods,and handling of the periosteum and perichondrium.This study aimed to provide an overview of the novel techniques used for auto-rib harvesting in rhinoplasty within the past 5 years and identify potential avenues for future research.Methods:We searched for related articles in PubMed,Embase,and Web of Science from 2019 to 2023,summa-rized crucial but controversial steps in recent practice,and analyzed their theoretical basis and clinical feasibility.Results:Auto-rib and cartilage open harvest is still mainstream in rhinoplasty and reconstruction,with the 5th to 8th ribs and cartilage being the most used.The laparoscopic harvest is gaining attention,being second only to the open harvest,with the 9th/10th ribs and cartilages being particularly convenient.The clinical applications of full-cut and split-cut methods differ in their advantages.Except for some special reasons,almost all studies tended to preserve the periosteum and perichondrium in situ,and few surgeons chose to harvest the grafts on the left side.Conclusion:Multiple techniques have emerged,requiring surgeons to balance the benefits and risks of various strategies at each step.New theories and techniques should be fully tested promptly and in clinical practice before wide application.Overall,a professional consensus is needed for better directivity,precision,and stability in clinical practice.
基金financial support from the National Key Research and Development Program of China (No.2023YFC2907501)the National Natural Science Foundation of China (No.52374106)the Fundamental Research Funds for the Central Universities (No.2023ZKPYNY01)。
文摘In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42077267,42277174,52074164)supported by the National Natural Science Foundation of ChinaProject(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52268048)the Guangxi Key Technology Research and Development Program(Grant No.GUI-KEAB23026101)the Guangxi Science and Technology Major Special Project(Grant No.GUI-KEAA22068066).
文摘In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.
文摘Background: Costal fracture surgical is still a debate, therefore we shall select between early and delay surgical management. Case Report: We are reporting two cases of post road traffic clash delay ribs fractures osteosynthesis involving a 63-year-old man with multistage fractures on the left and pulmonary pinning of one of the costal arches, complicated by a homolateral haemothorax and a 41-year-old man with a bilateral flail chest. Conclusion: The simple postoperative course and the immediate postoperative improvement in the patient’s clinical respiratory condition enabled us to discuss the time frame for management, in this case the indication for early or later surgery.
文摘Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.
文摘The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,considering the substructure made of reinforced concrete rigid frame and the space truss working together.Also,the anti-seismic characteristic of the wave-shaped space truss is studied based on the integral model.
基金supported by the National Natural Science Foundation of China(No.51276088)
文摘The heat transfer and pressure loss characteristics on a square channel with two opposite surfaces roughened by high blockage ratio ribs are measured by systematic experiments.Reynolds numbers studied in the channel range from 1 400 to 8 000.The ratios of rib height to hydraulic diameter (e/D) are 0.2and 0.33,respectively.The ratio of rib spacing to height (P/e) ranges from 5to 15.The rib orientations in the opposite surfaces are symmetrical and staggered arrangements.The results show that the heat transfer coefficients are increased with the increase of rib height and Reynolds number,though at the cost of higher pressure losses.When the rib spacing to height ratio is 10,it keeps the highest heat transfer coefficient in three kinds of rib spacing to height ratios 5,10 and 15.The heat transfer coefficient of symmetrical arrangement ribs is higher than that of the staggered arrangement ribs,but the pressure loss of the symmetrical arrangement ribs is larger than that of the staggered arrangement ribs.
基金the National Natural Science Foundation of China(81902167,52075138)the Natural Science Foundation of Jiangsu Province(BK20190872).
文摘Background:Early diagnosis and classification of infections increase the cure rate while decreasing complications,which is significant for severe infections,especially for war surgery.However,traditional methods rely on laborious operations and bulky devices.On the other hand,point-of-care(POC)methods suffer from limited robustness and accuracy.Therefore,it is of urgent demand to develop POC devices for rapid and accurate diagnosis of infections to fulfill on-site militarized requirements.Methods:We developed a wave-shaped microfluidic chip(WMC)assisted multiplexed detection platform(WMC-MDP).WMC-MDP reduces detection time and improves repeatability through premixing of the samples and reaction of the reagents.We further combined the detection platform with the streptavidin–biotin(SA-B)amplified system to enhance the sensitivity while using chemiluminescence(CL)intensity as signal readout.We realized simultaneous detection of C-reactive protein(CRP),procalcitonin(PCT),and interleukin-6(IL-6)on the detection platform and evaluated the sensitivity,linear range,selectivity,and repeatability.Finally,we finished detecting 15 samples from volunteers and compared the results with commercial ELISA kits.Results:Detection of CRP,PCT,and IL-6 exhibited good linear relationships between CL intensities and concentrations in the range of 1.25–40μg/ml,0.4–12.8 ng/ml,and 50–1600 pg/ml,respectively.The limit of detection of CRP,PCT,and IL-6 were 0.54μg/ml,0.11 ng/ml,and 16.25 pg/ml,respectively.WMC-MDP is capable of good adequate selectivity and repeatability.The whole detection procedure takes only 22 min that meets the requirements of a POC device.Results of 15 samples from volunteers were consistent with the results detected by commercial ELISA kits.Conclusions:WMC-MDP allows simultaneous,rapid,and sensitive detection of CRP,PCT,and IL-6 with satisfactory selectivity and repeatability,requiring minimal manipulation.However,WMC-MDP takes advantage of being a microfluidic device showing the coefficients of variation less than 10%enabling WMC-MDP to be a type of point-of-care testing(POCT).Therefore,WMC-MDP provides a promising alternative to POCT of multiple biomarkers.We believe the practical application of WMC-MDP in militarized fields will revolutionize infection diagnosis for soldiers.
文摘Stiffening-ribbed-hollow-pipe cast-in place reinforced concrete girderless floor is a new-style hollow girderless floor system. Model experimental researches of simply-supported floor and four-corners bearing floor have been done on this new kind of floor system in this paper. The experiment results show that the floor system has good mechanical property such as high bearing capacity, big rigidity and good tensility. A theoretical method is presented in this paper that the stiffening-ribbed-hollow-pipe girderless floor can be analyzed by being converted equivalently to orthotropic solid slab. It is indicated that the method is correct and reasonable according to the contrast between theoretical calculated results and experimental measured results. The theoretical results coincide with the measured results well.
基金Supported by the National Natural Science Foundation of China(11472093 and21276056)
文摘Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.
文摘In current numerical study,forced flow and heat transfer of water/NDG(Nitrogen-doped graphene)nanofluid in nanoparticles mass fractions(φ)of 0,2%and 4%at Reynolds numbers(Re)of 10,50,100 and 150 are simulated in steady states.Studied geometry is a two-dimensional microchannel under the influence of nanofluid jet injection.Temperature of inlet fluid equals with Tc=293 K and hot source of microchannel is under the influence of oscillating heat flux.Also,in this research,the effect of the variations of attack angle of triangular rib(15°,30°,45°and 60°)on laminar nanofluid flow behavior inside the studied rectangular geometry with the ratio of L/H=28 and nanofluid jet injection is investigated.Obtained results indicate that the increase of Reynolds number,nanoparticles mass fraction and attack angle of rib leads to the increase of pressure drop.By increasing fluid viscosity,momentum depreciation of fluid in collusion with microchannel surfaces enhances.Also,the increase of attack angle of rib at higher Reynolds numbers has a great effect on this coefficient.At low Reynolds numbers,due to slow motion of fluid,variations of attack angle of rib,especially in angles of 30°,45°and 60°are almost similar.By increasing fluid velocity,the effect of the variations of attack angle on pressure drop becomes significant and pressure drop figures act differently.In general,by using heat transfer enhancement methods in studied geometry,heat transfer increases almost 25%.
文摘The influence of different conditions on ribbed towel gourd seed germination was tested in this paper. Results showed that the seeds germinating energy and germination percentage were increased evidently under the treatment of dipping in normal water temperature for 4 hours and drying out for 1 hour at 30℃.
文摘Using the upper bound element technique (UBET), a numerical model was proposed for analyzing the metal deformation behavior in the extrusion process of ribbed thin wall pipes through a porthole die. Optimization parameters were contained in the numerical model and determined through minimizing the total work of metal deformation. Taking the extrusion process of thin wall pipe with one rib as an example, the calculated results using the proposed model are as follows: the extrusion pressure p is linearly related to the extrusion ratio R by p = a+bR 0.683 , where a = 14.13, b = 0.911. When the length of the billet remaining in container is shorter than a quarter of the container diameter, the plastic region extends over the whole of the remained billet and the extrusion process reaches the state of funnel deformation. There exists an optimum depth of welding chamber in respect of the extrusion pressure, and to the calculated example the optimum depth is about 10% of the circumscribed diameter of portholes. To obtain more equitable metal flow in welding chamber, it is required to make the dividing planes in container to be consistent with corresponding welding planes in the chamber ( θ max i = θ′ max i ) through choosing different entering area for each of the portholes.
文摘The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ assembly,segmental lifting,incremental launching and longitudinal moving,and vertical rotation.The temporary structural designs,process methods,and technological equipment for each construction scheme are described in detail.The advantages and disadvantages of each scheme and its application scope under various conditions are analyzed,and opinions and suggestions for guiding the application of each scheme are proposed.The comparison and selection analyses show that the four arch rib construction schemes have certain applicability under different conditions such as bridge site status,bridge span,and construction environment.With the continuous increase of bridge span and progress of construction technological equipment,the arch rib construction technology is developing towards the overall erection direction.This leads to more obvious technical advantages of the segmental lifting method,incremental launching and longitudinal moving method,and vertical rotation method.Therefore,it is necessary to select the best construction scheme according to the construction status and technical conditions during application.