期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Different Curing Systems on Mechanical Properties of Ultra-High Performance Concrete with Coarse Aggregate
1
作者 赵秋 杨明 +1 位作者 庄一舟 聂宇 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期492-497,共6页
High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-ea... High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage. 展开更多
关键词 ultra-high performance concrete(uhpc) coarse aggregate curing system STRENGTH MICROSTRUCTURE
下载PDF
Experimental testing of RC shear wall seismic retrofit using selective weakening,self-centering and Ultra High performance concrete
2
作者 Sumedh S.harma Sriram Aaleti Pinar Okumus 《Resilient Cities and Structures》 2023年第1期76-90,共15页
Traditional retrofit methods often focus on increasing the structure’s strength,stiffness,or both.This may in-crease seismic demand on the structure and could lead to irreparable damage during a seismic event.This pa... Traditional retrofit methods often focus on increasing the structure’s strength,stiffness,or both.This may in-crease seismic demand on the structure and could lead to irreparable damage during a seismic event.This paper presents a retrofit method,integrating concepts of selective weakening and self-centering(rocking)to achieve low seismic damage for non-code compliant reinforced concrete shear walls.The proposed method involves con-verting traditional cast-in-place concrete shear walls into rocking walls,which helps to lower the shear demand,while allowing re-centering.Two large-scale lateral load tests were performed to validate the retrofit concept on a concrete shear wall designed according to pre-1970s standards.The design parameters investigated were amount of energy dissipating reinforcements and confinement enhancement.Two different methods using Ultra High Performance Concrete(UHPC)were investigated to provide additional confinement to boundary elements of older shear walls.Observations from the tests showed minimized damage and enhanced recentering in the retrofitted wall specimens.Use of UHPC in the boundary elements of the retrofitted walls provided additional confinement and reduced damage in the rocking corners. 展开更多
关键词 Seismic retrofit Reinforced concrete shear walls Selective weakening SELF-CENTERING ultra-high performance concrete(uhpc) CONFINEMENT
下载PDF
Analysis and Prediction Model Reinforced UHPC Shrinkage Property
3
作者 Shuwen Deng Zhiming Huang +1 位作者 Hao Chen Jia Hu 《Journal of Architectural Research and Development》 2024年第2期99-107,共9页
This paper explores the shrinkage of reinforced UHPC under high-temperature steam curing and natural curing conditions.The results are compared with the existing shrinkage prediction models.The results show that the m... This paper explores the shrinkage of reinforced UHPC under high-temperature steam curing and natural curing conditions.The results are compared with the existing shrinkage prediction models.The results show that the maximum shrinkage strain of reinforced UHPC after steam curing is 164μεand gradually becomes zero.As for natural curing,the maximum shrinkage strain is 173μεand the value stabilizes on the 10th day after pouring.This indicated that steam curing can significantly reduce shrinkage time.Compared with the plain UHPC tested in the previous literature,the structural reinforcement can significantly inhibit the UHPC shrinkage and greatly reduce the risk of cracking due to shrinkage.By comparing the results in this paper with the existing models for predicting the shrinkage strain development,it is found that the formula recommended in the French UHPC structural and technical specification is suitable for the shrinkage curve in the present paper. 展开更多
关键词 ultra-high performance concrete(uhpc) uhpc shrinkage Reinforced uhpc slab Shrinkage prediction
下载PDF
带肋UHPC预制拼装箱型管廊试设计研究
4
作者 李嘉维 朱三凡 +1 位作者 李志鹏 连胤凯 《市政技术》 2024年第9期214-220,共7页
超高性能混凝土(UHPC)是一种新型纤维增强混凝土施工材料,因具有减重、经济、耐久性好等特点,已被应用于地下综合管廊中。因此,以福建省平潭综合管廊为例,进行了带肋UHPC预制拼装箱型管廊试设计。其结果表明,带肋UHPC预制拼装箱型管廊... 超高性能混凝土(UHPC)是一种新型纤维增强混凝土施工材料,因具有减重、经济、耐久性好等特点,已被应用于地下综合管廊中。因此,以福建省平潭综合管廊为例,进行了带肋UHPC预制拼装箱型管廊试设计。其结果表明,带肋UHPC预制拼装箱型管廊试设计满足受力性能要求,且有较大安全储备和改进空间;与原C40综合管廊相比,带肋UHPC预制拼装箱型管廊混凝土和钢筋的用量分别减少了51.6%和53.6%;带肋UHPC预制拼装箱型管廊造价虽然是原C40综合管廊的1.38倍,但综合考虑力学性能、施工效率、结构运输等方面,带肋UHPC预制拼装箱型管廊仍优于原C40综合管廊。该研究结果可以为带肋UHPC预制拼装箱型管廊的应用提供参考。 展开更多
关键词 带肋uhpc 预制拼装箱型管廊 优化设计
下载PDF
带开孔板剪力键的钢-UHPC组合板受弯性能试验研究及数值模拟 被引量:8
5
作者 周敏 肖靖林 +2 位作者 杨腾宇 聂建国 樊健生 《工程力学》 EI CSCD 北大核心 2022年第7期19-29,共11页
研究了一种采用开孔板(PBL)剪力键的钢-超高性能混凝土(UHPC)组合板,可用作大跨度桥面板或楼板。基于某特大跨度组合梁斜拉桥的桥面板设计,完成了3块钢-UHPC组合板和1块钢-C60组合板的足尺模型试验,探究剪力连接件种类、数量和混凝土材... 研究了一种采用开孔板(PBL)剪力键的钢-超高性能混凝土(UHPC)组合板,可用作大跨度桥面板或楼板。基于某特大跨度组合梁斜拉桥的桥面板设计,完成了3块钢-UHPC组合板和1块钢-C60组合板的足尺模型试验,探究剪力连接件种类、数量和混凝土材料对组合板受力性能的影响。试验结果表明:在集中荷载作用下,钢-UHPC组合板发生典型的弯曲破坏,而钢-C60组合板发生冲切破坏;钢-UHPC组合板的承载力、刚度和延性均远优于相同厚度的钢-C60组合板;在3块钢-UHPC组合板试件中,含较多开孔板剪力键的试件表现出最佳的受力性能。基于ABAQUS建立钢-UHPC组合板的精细有限元模型,模型的预测结果与试验得到的荷载-位移曲线吻合良好,进一步利用有限元模型开展了参数分析。 展开更多
关键词 超高性能混凝土(uhpc) 钢-uhpc组合板 开孔板剪力键 足尺试验 有限元模型
下载PDF
Conceptual Design of Hybrid Cable-Stayed Bridge with Central Span of 1000 m Using UHPC 被引量:4
6
作者 Hyejin Yoon Won Jong Chin +2 位作者 Hee Seok Kim Moon Seoung Keum Young Jin Kim 《Engineering(科研)》 2013年第9期744-750,共7页
Ultra-high performance concrete (UHPC) is featured by a compressive strength 5 times higher than that of ordinary concrete and by a high durability owing to the control of the chloride penetration speed by its dense s... Ultra-high performance concrete (UHPC) is featured by a compressive strength 5 times higher than that of ordinary concrete and by a high durability owing to the control of the chloride penetration speed by its dense structure. The high strength characteristics of UHPC offer numerous advantages like the reduction of the quantities of cables and foundations by the design of a lightweight superstructure in the case of the long-span bridge preserving its structural performance through axial forces and structures governed by compression. This study conducted the conceptual design of a hybrid cable-stayed bridge with central span of 1000 m and exploiting 200 MPa-class UHPC. The economic efficiency of the conceptual design results of the hybrid cable-stayed bridge with central span of 1000 m and of Sutong Bridge, the longest cable-stayed bridge in the world, was analyzed. 展开更多
关键词 ultra-high performance concrete uhpc CABLE-STAYED BRIDGE 200 MPa-Class Sutong BRIDGE
下载PDF
集中配筋连接预制剪力墙抗震性能试验研究 被引量:1
7
作者 肖扬 卢谦 +3 位作者 罗小勇 陈林松 程俊峰 张璧玮 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期201-218,共18页
针对现有预制混凝土剪力墙接缝施工容错率低、混凝土现场浇筑作业量大和钢筋锚固过长等不足,提出一种使用超高性能混凝土(UHPC)的集中配筋连接预制剪力墙。通过对比1片现浇剪力墙试件、3片不同接缝形式的集中配筋连接预制剪力墙试件的... 针对现有预制混凝土剪力墙接缝施工容错率低、混凝土现场浇筑作业量大和钢筋锚固过长等不足,提出一种使用超高性能混凝土(UHPC)的集中配筋连接预制剪力墙。通过对比1片现浇剪力墙试件、3片不同接缝形式的集中配筋连接预制剪力墙试件的拟静力试验结果,揭示该类预制剪力墙的破坏规律和抗震性能、竖缝对墙体抗震性能的影响和连接钢筋的受力特点。采用ABAQUS软件对试件进行有限元模拟,分析轴压比和集中配筋率对试件抗震性能的影响。研究结果表明:预制试件与现浇试件具有相同的破坏规律,均为弯剪破坏;这2类试件的滞回曲线均较饱满,骨架曲线走势基本一致,耗能能力接近,且预制试件的最小承载力仅比现浇试件低5.6%,表明预制试件的抗震性能与现浇试件的抗震性能基本相同;竖缝对剪力墙承载力的影响较小,使剪力墙的延性和耗能能力有一定的削弱;不同竖缝形式预制墙的抗震性能相近但各有特点,竖缝形式预制墙采用UHPC出筋搭接具有更好的整体性,采用U形键槽的预制墙具有更大的刚度和更强的耗能能力;连接钢筋的应力分布具有典型受弯构件的特征;随着轴压比增加,模型的刚度和承载力不断增加,在轴压比从0.05增加到0.30时,最大的峰值荷载增幅发生在轴压比从0.05到0.10时,从承载力的提高、刚度、耗能和墙角抬高等方面考虑,试件的集中配筋率保持在90%~110%为宜。 展开更多
关键词 预制剪力墙 集中配筋 拟静力试验 uhpc(ultra-high performance concrete) 抗震性能
下载PDF
Effects of fibers on the mechanical properties of UHPC:A review 被引量:12
8
作者 Jian Yang Baochun Chen +3 位作者 Jiazhan Su Gang Xu Dong Zhang Jialiang Zhou 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2022年第3期363-387,共25页
Ultra-high performance concrete(UHPC) developed rapidly in research and commercial use during the recent decade. Significant progress has been achieved in its material science and technology, including why and how to ... Ultra-high performance concrete(UHPC) developed rapidly in research and commercial use during the recent decade. Significant progress has been achieved in its material science and technology, including why and how to add discontinuous fiber reinforcement in it.This paper reviews the researches on understanding the effects of various fibers on the mechanical properties of UHPC, focus on the straight steel fibers but involving also deformed steel fibers, non-steel fibers as well as hybrid fibers. It also discusses the research methodology, prediction of mechanical properties by fiber factors, and the classification of UHPC mechanical properties related to this topic. It shows that(1) the experimental research is the main methodology for investigating the effect of the fibers on the mechanical properties of UHPC;the tensile performance of UHPC should be studied by uniaxial tensile tests and its representative indicators should include tensile strength, initial cracking strength, and peak tensile strain;(2) fiber plays an essential role in the reinforcement of the tensile strength, compressive strength, modulus of elasticity, and other material properties of UHPC, but in weakening the flowability of fresh UHPC. The positive and negative effects of fibers on the mechanical properties of UHPC should be considered,and the technology should be developed to maintain the flowability when high volume fraction of fibers is added in the UHPC;(3) the parameters of steel fibers affecting the mechanical properties of UHPC include volume fraction, size, shape, orientation and distribution, average bonding strength and minimum tensile strength, etc., which are mainly studied independently in the existing research. The studies on the combined effect of these parameters are limited but worthy of further investigation;(4) hybrid fibers could efficiently produce reinforcement effects for UHPC. It has great practical and research significance to conduct in-depth studies though the theoretical analysis and quantitative prediction are complex. 展开更多
关键词 ultra-high performance concrete(uhpc) Fiber reinforcement Effect factor Hybrid fiber Quantitative analysis Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部