期刊文献+
共找到77,706篇文章
< 1 2 250 >
每页显示 20 50 100
Regulation of 2-acetyl-1-pyrroline and grain quality in early-season indica fragrant rice by nitrogen and silicon fertilization under different plantation methods 被引量:1
1
作者 Yongjian Chen Lan Dai +7 位作者 Siren Cheng Yong Ren Huizi Deng Xinyi Wang Yuzhan Li Xiangru Tang Zaiman Wang Zhaowen Mo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期511-535,共25页
Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag... Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments. 展开更多
关键词 fragrant rice 2-AP content head rice yield mechanical planting NITROGEN silicon
下载PDF
Changes in Metabolites and Allelopathic Effects of Non-Pigmented and Black-Pigmented Lowland Indica Rice Varieties in Phosphorus Deficiency
2
作者 Liyana SARA Sompop SAEHENG +1 位作者 Panupong PUTTARAK Lompong KLINNAWEE 《Rice science》 SCIE CSCD 2024年第4期434-448,I0025,I0026,共17页
Phosphorus(P) levels alter the allelopathic activity of rice seedlings against lettuce seeds. In this study, we investigated the effect of P deficiency on the allelopathic potential of non-pigmented and pigmented rice... Phosphorus(P) levels alter the allelopathic activity of rice seedlings against lettuce seeds. In this study, we investigated the effect of P deficiency on the allelopathic potential of non-pigmented and pigmented rice varieties. Rice seedlings of the white variety Khao Dawk Mali(KDML105, non-pigmented) and the black varieties Jao Hom Nin(JHN, pigmented) and Riceberry(RB, pigmented) were cultivated under high P(HP) and low P(LP) conditions. Morphological and metabolic responses to P deficiency were investigated. P deficiency inhibited shoot growth but promoted root growth of rice seedlings in all three varieties. Moreover, P deficiency led to decreased cytosolic phosphate(Pi) and total P concentrations in both shoot and root tissues. The subsequent reduction in internal P concentration enhanced the accumulation of phenolic compounds in both shoot and root tissues of the seedlings. Subsequently, allelopathy-based inter-and intra-specific interactions were assessed using water extracts from seedlings of the three varieties grown under HP and LP conditions. These extracts were tested on seeds of lettuce, the weed Dactyloctenium aegyptium, and the same rice variety. The shoot and root extracts from P-deficient seedlings reduced the germination of all recipient plants. Specifically, the shoot extract from P-deficient KDML105 seedlings reduced the germination index(GI) of lettuce seeds to 1%, while those from P-deficient RB and JHN seedlings produced GIs of 32% and 42%, respectively. However, when rice seeds were exposed to their own LP shoot and root extracts, their GIs increased up to 4-fold, compared with the HP extracts. Additionally, the shoot extracts from P-deficient plants also stimulated the germination of D. aegyptium by about 2–3-fold, whereas the root extracts did not have this effect. Therefore, P starvation led to the accumulation and exudation of phenolics in the shoots and roots of rice seedlings, altering their allelopathic activities. To adapt to P deficiency, rice seedlings potentially release signaling chemicals to suppress nearby competing species while simultaneously promoting their own germination and growth. 展开更多
关键词 phosphorus deficiency non-pigmented and black-pigmented rice phenolics extract ALLELOPATHY
下载PDF
Genome-Wide Association Study of Cooked Rice Textural Attributes and Starch Physicochemical Properties in indica Rice
3
作者 DENG Bowen ZHANG Yanni +4 位作者 ZHANG Fan WANG Wensheng XU Jianlong ZHANG Yu BAO Jinsong 《Rice science》 SCIE CSCD 2024年第3期300-316,I0018-I0041,共41页
Rice cooking and eating qualities(CEQ)are mainly determined by cooked rice textural parameters and starch physicochemical properties.However,the genetic bases of grain texture and starch properties in rice have not be... Rice cooking and eating qualities(CEQ)are mainly determined by cooked rice textural parameters and starch physicochemical properties.However,the genetic bases of grain texture and starch properties in rice have not been fully understood.We conducted a genome-wide association study for apparent amylose content(AAC),starch pasting viscosities,and cooked rice textural parameters using 279 indica rice accessions from the 3000 Rice Genome Project.We identified 26 QTLs in the whole population and detected single nucleotide polymorphisms(SNPs)with the lowest P-value at the Waxy(Wx)locus for all traits except pasting temperature and cohesiveness.Additionally,we detected significant SNPs at the SUBSTANDARD STARCH GRAIN6(SSG6)locus for AAC,setback(SB),hardness,adhesiveness,chewiness(CHEW),gumminess(GUM),and resilience.We subsequently divided the population using a SNP adjacent to the Waxy locus,and identified 23 QTLs and 12 QTLs in two sub-panels,WxT and WxA,respectively.In these sub-panels,SSG6 was also identified to be associated with pasting parameters,including peak viscosity,hot paste viscosity,cold paste viscosity,and consistency viscosity.Furthermore,a candidate gene encoding monosaccharide transporter 5(OsMST5)was identified to be associated with AAC,breakdown,SB,CHEW,and GUM.In total,39 QTLs were co-localized with known genes or previously reported QTLs.These identified genes and QTLs provide valuable information for genetic manipulation to improve rice CEQ. 展开更多
关键词 cooking and eating quality genome-wide association study rice Waxy gene
下载PDF
Dry Breeding and Dry Planting Techniques for Indica Hybrid Rice in Karst Mountain Areas of Gejiu City
4
作者 Guifen WANG Wei SHI 《Plant Diseases and Pests》 2024年第2期34-36,共3页
Based on the arable land situation in Gejiu City,upland dry planting of indica hybrid rice is being expanded in Karst mountain areas with a rainfall of over 1400 mm and an altitude of 1100-1600 m to develop grain prod... Based on the arable land situation in Gejiu City,upland dry planting of indica hybrid rice is being expanded in Karst mountain areas with a rainfall of over 1400 mm and an altitude of 1100-1600 m to develop grain production.This paper gives a specific description of hybrid rice upland dry seedling technology,upland transplanting technology,fertilization technology,field management,weed prevention and control technology,and disease and pest control. 展开更多
关键词 Karst mountain area Hybrid rice Dry breeding Dry planting
下载PDF
The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting 被引量:2
5
作者 Jingnan Zou Ziqin Pang +11 位作者 Zhou Li Chunlin Guo Hongmei Lin Zheng Li Hongfei Chen Jinwen Huang Ting Chen Hailong Xu Bin Qin Puleng Letuma Weiwei Lin Wenxiong Lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期806-823,共18页
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ... Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop. 展开更多
关键词 mechanized harvesting ratoon rice rice stubble yield attributes
下载PDF
A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data 被引量:2
6
作者 Yunping Chen Jie Hu +6 位作者 Zhiwen Cai Jingya Yang Wei Zhou Qiong Hu Cong Wang Liangzhi You Baodong Xu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1164-1178,共15页
Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while r... Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities. 展开更多
关键词 ratoon rice phenology-based ratoon rice vegetation index(PRVI) phenological phase feature selection Harmonized Landsat Sentinel-2 data
下载PDF
Dynamic changes of rumen microbiota and serum metabolome revealed increases in meat quality and growth performances of sheep fed bio‑fermented rice straw 被引量:1
7
作者 Yin Yin Kyawt Min Aung +6 位作者 Yao Xu Zhanying Sun Yaqi Zhou Weiyun Zhu Varijakshapanicker Padmakumar Zhankun Tan Yanfen Cheng 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1207-1226,共20页
Background Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed.Our previous study showed that feeding bio-fermented rice straw(BF)improv... Background Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed.Our previous study showed that feeding bio-fermented rice straw(BF)improved the feed intake and weight gain of sheep.However,it remains unclear why feeding BF to sheep increased their feed intake and weight gain.Therefore,the purposes of this research were to investigate how the rumen micro-biota and serum metabolome are dynamically changing after feeding BF,as well as how their changes influence the feed intake,digestibility,nutrient transport,meat quality and growth performances of sheep.Twelve growing Hu sheep were allocated into 3 groups:alfalfa hay fed group(AH:positive control),rice straw fed group(RS:negative control)and BF fed group(BF:treatment).Samples of rumen content,blood,rumen epithelium,muscle,feed offered and refusals were collected for the subsequent analysis.Results Feeding BF changed the microbial community and rumen fermentation,particularly increasing(P<0.05)relative abundance of Prevotella and propionate production,and decreasing(P<0.05)enteric methane yield.The histomorphology(height,width,area and thickness)of rumen papillae and gene expression for carbohydrate trans-port(MCT1),tight junction(claudin-1,claudin-4),and cell proliferation(CDK4,Cyclin A2,Cyclin E1)were improved(P<0.05)in sheep fed BF.Additionally,serum metabolome was also dynamically changed,which led to up-regulating(P<0.05)the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF.As a result,the higher(P<0.05)feed intake,digestibility,growth rate,feed efficiency,meat quality and mono-unsaturated fatty acid concentration in muscle,and the lower(P<0.05)feed cost per kg of live weight were achieved by feeding BF.Conclusions Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost.Therefore,bio-fermentation of rice straw could be an innovative way for improving ruminant production with mini-mizing production costs. 展开更多
关键词 Bio-fermentation Growth rate Meat quality METABOLOME MICROBIOTA rice straw
下载PDF
Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions 被引量:1
8
作者 Tingcheng Zhao Aibin He +3 位作者 Mohammad Nauman Khan Qi Yin Shaokun Song Lixiao Nie 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期93-107,共15页
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u... Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection. 展开更多
关键词 colored rice organic fertilizer soil quality grain yield ANTHOCYANIN
下载PDF
MIR1868 negatively regulates rice cold tolerance at both the seedling and booting stages 被引量:1
9
作者 Yang Shen Xiaoxi Cai +7 位作者 Yan Wang Wanhong Li Dongpeng Li Hao Wu Weifeng Dong Bowei Jia Mingzhe Sun Xiaoli Sun 《The Crop Journal》 SCIE CSCD 2024年第2期375-383,共9页
Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive s... Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive stages.This study revealed a rice-specific 24-nt miRNA,miR1868,whose accumulation was suppressed by cold stress.Knockdown of MIR1868 increased seedling survival,pollen fertility,seed setting,and grain yield under cold stress,whereas its overexpression conferred the opposite phenotype.Knockdown of MIR1868 increased reactive oxygen species(ROS)scavenging and soluble sugar content under cold stress by increasing the expression of peroxidase genes and sugar metabolism genes,and its overexpression produced the opposite effect.Thus,MIR1868 negatively regulated rice cold tolerance via ROS scavenging and sugar accumulation. 展开更多
关键词 rice Cold tolerance MIRNA ROS scavenging Soluble sugar accumulation
下载PDF
Grain Yield,Biomass Accumulation,and Leaf Photosynthetic Characteristics of Rice under Combined Salinity-Drought Stress 被引量:1
10
作者 WEI Huanhe GENG Xiaoyu +7 位作者 ZHANG Xiang ZHU Wang ZHANG Xubin CHEN Yinglong HUO Zhongyang ZHOU Guisheng MENG Tianyao DAI Qigen 《Rice science》 SCIE CSCD 2024年第1期118-128,I0023,共12页
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit... Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield. 展开更多
关键词 antioxidant defense system combined salinity-drought stress drought stress photosynthetic characteristics rice salinity stress
下载PDF
Metagenomic analysis revealing the metabolic role of microbial communities in the free amino acid biosynthesis of Monascus rice vinegar during fermentation 被引量:1
11
作者 Hang Gao Jian Zhang +4 位作者 Li Liu Lijun Fu Yan Zhao Germán Mazza Xin Zhang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2317-2326,共10页
Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic netw... Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation. 展开更多
关键词 Monascus rice vinegar Metagenomic analysis Free amino acid synthesis Metabolic pathway Microbial distribution
下载PDF
Global characterization of OsPIP aquaporins reveals that the H_(2)O_(2)transporter OsPIP2;6 increases resistance to rice blast 被引量:1
12
作者 Gousi Li Jingluan Han +6 位作者 Chen Yi Hao Luo Yuzhu Wang Fengpin Wang Xiaoyu Wang Letian Chen Yaling Zhang 《The Crop Journal》 SCIE CSCD 2024年第1期102-109,共8页
Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and a... Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and abiotic stress.To elucidate their roles in plant immunity to pathogen attack,we characterized the expression patterns,subcellular localizations,and H_(2)O_(2)-transport ability of 11 OsPIPs in rice(Oryza sativa),and identified OsPIP2;6 as necessary for rice disease resistance.OsPIP2;6 resides on the plasma membrane and facilitates cytoplasmic import of the immune signaling molecule H_(2)O_(2).Knockout of OsPIP2;6 increases rice susceptibility to Magnaporthe oryzae,indicating a positive function in plant immunity.OsPIP2;6 interacts with OsPIP2;2,which has been reported to increase rice resistance to pathogens via H_(2)O_(2)transport.Our findings suggest that OsPIP2;6 cooperates with OsPIP2;2 as a defense signal transporter complex during plant–pathogen interaction. 展开更多
关键词 AQUAPORIN Plant immunity rice blast H_(2)O_(2)transport
下载PDF
Rice Husk at a Glance:From Agro-Industrial to Modern Applications
13
作者 Masoumeh KORDI Naser FARROKHI +1 位作者 Martin I.PECH-CANUL Asadollah AHMADIKHAH 《Rice science》 SCIE CSCD 2024年第1期14-32,共19页
Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 milli... Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 million tons of grain and 150 million tons of husk.Rice husk(RH)contains valuable biomaterials with extensive applications in various fields.The proportions of each component depend primarily on rice genotype,soil chemistry,and climatic conditions.RH and its derivatives,including ash,biochar,hydrochar,and activated carbon have been placed foreground of applications in agriculture and other industries.While the investigation on RH’s compositions,microstructures,and by-products has been done copiously,owing to its unique features,it is still an open-ended area with enormous scope for innovation,research,and technology.Here,we reviewed the latest applications of RH and its derivatives,including fuel and other energy resources,construction materials,pharmacy,medicine,and nanobiotechnology to keep this versatile biomaterial in the spotlight. 展开更多
关键词 circular bioeconomy rice husk activated carbon rice husk ash rice husk biochar rice husk hydrochar rice husk application
下载PDF
Effects of Milling Methods on Rice Flour Properties and Rice Product Quality:A Review
14
作者 TIAN Yu SUN Jing +7 位作者 LI Jiaxin WANG Aixia NIE Mengzi GONG Xue WANG Lili LIU Liya WANG Fengzhong TONG Litao 《Rice science》 SCIE CSCD 2024年第1期33-46,共14页
High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and qualit... High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and quality characteristics of the flour.Although rice flour obtained through mainstream wet milling methods exhibits superior quality,low production efficiency and wastewater discharge limit the development of the industry.Dry milling,on the other hand,conserves water resources,but adversely affects flour performance due to excessive heat generation.As an emerging powder-making technique,semi-dry milling offers a promising solution by enhancing flour quality and reducing environmental impact.This is achieved by minimizing soaking time through hot air treatment while reducing mechanical energy consumption to reach saturated water absorption levels.However,continuous production remains a challenge.This comprehensive review summarizes the effects of various milling technologies on rice flour properties and product qualities.It also discusses key control indicators and technical considerations for rice flour processing equipment and processes. 展开更多
关键词 flour property milling equipment milling method rice flour rice product quality semi-dry milling
下载PDF
Direct-Seeded Rice: Genetic Improvement of Game-Changing Traits for Better Adaption
15
作者 Priyanka NEGI Jagadish RANE +10 位作者 Rajendra Sadashiv WAGH Tukaram Jayaram BHOR Dipti Digambar GODSE Priyanka JADHAV C.ANILKUMAR Dasari SREEKANTH K.SAMMI REDDY Sharad Ramrao GADAKH K.M.BORAIH C.B.HARISHA P.S.BASAVARAJ 《Rice science》 SCIE CSCD 2024年第4期417-433,共17页
The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water cost... The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water costs accompanying it, direct-seeded rice(DSR) is unquestionably one of the most practical solutions. Despite its resource and climate-friendly advantages, early maturing rice faces weed competitiveness and seedling establishment challenges. Resolving these issues is crucial for promoting its wider adoption among farmers, presenting it as a more effective sustainable rice cultivation method globally. Diverse traditional and contemporary breeding methods are employed to mitigate the limitations of the DSR approach, leveraging advanced techniques such as speed breeding and genome editing. Focusing on key traits like mesocotyl length elongation, early seedling vigor, root system architecture, and weed competitiveness holds promise for transformative improvements in DSR adaptation at a broader scale within farming communities. This review aims to summarize how these features contribute to increased crop production in DSR conditions and explore the research efforts focusing on enhancing DSR adaptation through these traits. Emphasizing the pivotal role of these game-changing traits in DSR adaptation, our analysis sheds light on their potential transformative impact and offers valuable insights for advancing DSR practices. 展开更多
关键词 climate change direct-seeded rice aerobic rice early vigor trait
下载PDF
Preparation of lactic acid bacteria compound starter cultures based on pasting properties and its improvement of glutinous rice flour and dough
16
作者 Dengyu Wang Linlin Liu +4 位作者 Bing Wang Wenjian Xie Yanguo Shi Na Zhang Hongchen Fan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2090-2101,共12页
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an... The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application. 展开更多
关键词 Glutinous rice flour Glutinous rice dough Lactic acid bacteria compound starter cultures Pasting properties VISCOELASTICITY
下载PDF
基于RICE模型的不同减排政策下全球分区域碳中和预估
17
作者 赵卫星 丑洁明 +2 位作者 李芫梦 郝一丹 金昊峰 《气候与环境研究》 CSCD 北大核心 2024年第3期329-338,共10页
选取分区域的综合评估模型RICE来评估全球分区域的碳中和路径,在改进了RICE模型的损失函数的基础上,利用改进的RICE模型分析研判了不同减排情景下全球以及12个区域的潜在碳中和时间点以及区域未来气候变化潜在损失。结果表明,改进损失... 选取分区域的综合评估模型RICE来评估全球分区域的碳中和路径,在改进了RICE模型的损失函数的基础上,利用改进的RICE模型分析研判了不同减排情景下全球以及12个区域的潜在碳中和时间点以及区域未来气候变化潜在损失。结果表明,改进损失函数后,RICE模型对未来气候变化损失的模拟能力显著提升。在不同情景下,未来发达国家区域的气候变化损失绝对值较大,但是气候变化损失占地区生产总值的比例相对较低。发展中国家区域气候变化损失的增加更加明显,并承受更多的气候变化风险。在中等排放情景下(情景二),部分发展中国家区域在2085年以后才能达到碳中和,中国在2060年无法达到碳中和。针对中国设定的碳中和路径表明,中国需要在2040年前后碳达峰,并在此之后迅速减少碳排放。只有尽早实现碳达峰,才能最终实现碳中和目标。 展开更多
关键词 综合评估模型 rice模型 损失函数 碳中和 碳减排
下载PDF
Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis
18
作者 Myeong-Hyeon Min Aye Aye Khaing +2 位作者 Sang-Ho Chu Bhagwat Nawade Yong-Jin Park 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2525-2540,共16页
Pre-harvest sprouting(PHS)poses a significant global challenge to cereal production,impacting both yield and quality.In this study,we employed genome-wide association studies(GWAS)on diverse rice accessions to identif... Pre-harvest sprouting(PHS)poses a significant global challenge to cereal production,impacting both yield and quality.In this study,we employed genome-wide association studies(GWAS)on diverse rice accessions to identify novel PHS-associated haplotypes.An assessment of 127 cultivated accessions for panicle germination(PHS)and detached grain germination(germination rate of detached grains at the 14th day(D14))revealed considerable phenotypic variation among rice ecotypes.GWAS analysis identified 91 significant signals at–log10(P-value)>5,including 15SNPs for PHS and 76 SNPs for D14.A subsequent linkage disequilibrium(LD)block-based GWAS analysis detected 227 significant SNPs for both traits,consisting of 18 nonsynonymous substitutions located on the coding regions of nine genes.Further haplotype analysis identified 32 haplotypes,with 10 specific to cultivated accessions,19 specific to the wild type,and three shared between them.A phenotypic assessment of major haplotypes revealed significant differences between resistant(Hap1 and Hap2)and susceptible haplotypes(Hap5,Hap27,and Hap28),distinguished by a G/A SNP within a novel gene,Os04g0545200.The identified haplotypes offer promising prospects for haplotypebased breeding aimed at enhancing PHS resistance in rice. 展开更多
关键词 rice PHS DORMANCY GERMINATION GWAS HAPLOTYPE abiotic stress
下载PDF
A comparative study on the role of conventional,chemical,and nanopriming for better salt tolerance during seed germination of direct seeding rice
19
作者 Yixue Mu Yusheng Li +7 位作者 Yicheng Zhang Xiayu Guo Shaokun Song Zheng Huang Lin Li Qilin Ma Mohammad Nauman Khan Lixiao Nie 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期3998-4017,共20页
Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination a... Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination and seedling growth of direct-seeded rice.Recently,nanoparticles(NPs)have been reported to be effectively involved in many plant physiological processes,particularly under abiotic stresses.To our knowledge,no comparative studies have been performed to study the efficiency of conventional,chemical,and seed nanopriming for better plant stress tolerance.Therefore,we conducted growth chamber and field experiments with different salinity levels(0,1.5,and 3‰),two rice varieties(CY1000 and LLY506),and different priming techniques such as hydropriming,chemical priming(ascorbic acid,salicylic acid,and γ-aminobutyric acid),and nanopriming(zinc oxide nanoparticles).Salt stress inhibited rice seed germination,germination index,vigor index,and seedling growth.Also,salt stress increased the over accumulation of reactive oxygen species(H_(2)O_(2) and O_(2)^(-)·)and malondialdehyde(MDA)contents.Furthermore,salt-stressed seedlings accumulated higher sodium(Na^(+))ions and significantly lower potassium(K^(+))ions.Moreover,the findings of our study demonstrated that,among the different priming techniques,seed nanopriming with zinc oxide nanoparticles(NanoZnO)significantly contributed to rice salt tolerance.ZnO nanopriming improved rice seed germination and seedling growth in the pot and field experiments under salt stress.The possible mechanism behind ZnO nanopriming improved rice salt tolerance included higher contents of α-amylase,soluble sugar,and soluble protein and higher activities of antioxidant enzymes to sustain better seed germination and seedling growth.Moreover,another mechanism of ZnO nanopriming induced rice salt tolerance was associated with better maintenance of(K^(+))ions content.Our research concluded that NanoZnO could promote plant salt tolerance and be adopted as a practical nanopriming technique,promoting global crop production in saltaffected agricultural lands. 展开更多
关键词 rice SALINITY ROS scavenging seed nanopriming GERMINATION mechanism
下载PDF
Next Generation Nutrition: Genomic and Molecular Breeding Innovations for Iron and Zinc Biofortification in Rice
20
作者 Kunhikrishnan Hemalatha DHANYALAKSHMI Reshma MOHAN +7 位作者 Sasmita BEHERA Uday Chand JHA Debashis MOHARANA Ahalya BEHERA Sini THOMAS Preman Rejitha SOUMYA Rameswar Prasad SAH Radha BEENA 《Rice science》 SCIE CSCD 2024年第5期526-544,I0029,I0030,共21页
Global efforts to address malnutrition and hidden hunger, particularly prevalent in low- and middle-income countries, have intensified, with a focus on enhancing the nutritional content of staple crops like rice. Desp... Global efforts to address malnutrition and hidden hunger, particularly prevalent in low- and middle-income countries, have intensified, with a focus on enhancing the nutritional content of staple crops like rice. Despite serving as a staple for over half of the world's population, rice falls short in meeting daily nutritional requirements, especially for iron(Fe) and zinc(Zn). Genetic resources, such as wild rice species and specific rice varieties, offer promising avenues for enhancing Fe and Zn content. Additionally, molecular breeding approaches have identified key genes and loci associated with Fe and Zn accumulation in rice grains. This review explores the genetic resources and molecular mechanisms underlying Fe and Zn accumulation in rice grains. The functional genomics involved in Fe uptake, transport, and distribution in rice plants have revealed key genes such as OsFRO1, OsIRT1, and OsNAS3. Similarly, genes associated with Zn uptake and translocation, including OsZIP11 and OsNRAMP1, have been identified. Transgenic approaches, leveraging transporter gene families and genome editing technologies, offer promising avenues for enhancing Fe and Zn content in rice grains. Moreover, strategies for reducing phytic acid(PA) content, a known inhibitor of mineral bioavailability, have been explored, including the identification of low-PA mutants and natural variants. The integration of genomic information, including whole-genome resequencing and pan-genome analyses, provides valuable insights into the genetic basis of micronutrient traits and facilitates targeted breeding efforts. Functional genomics studies have elucidated the molecular mechanisms underlying Fe uptake and translocation in rice. Furthermore, transgenic and genome editing techniques have shown promise in enhancing Fe and Zn content in rice grains through the manipulation of key transporter genes. Overall, the integration of multi-omics approaches holds significant promise for addressing global malnutrition and hidden hunger by enhancing the nutritional quality of rice, thereby contributing to improved food and nutritional security worldwide. 展开更多
关键词 BIOFORTIFICATION grain quality IRON phytic acid rice ZINC
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部