A hydroponic culture experiment was done to investigate the effect of Cd stress on glutathione content (GSH) and glutathione S-transferase (GST, EC 2.5.1,18) activity in rice seedlings. The rice growth was severel...A hydroponic culture experiment was done to investigate the effect of Cd stress on glutathione content (GSH) and glutathione S-transferase (GST, EC 2.5.1,18) activity in rice seedlings. The rice growth was severely inhibited when Cd level in the solution was higher than 10 mg/L. In rice shoots, GSH content and GST activity increased with the increasing Cd level, while in roots, GST was obviously inhibited by Cd treatments, Compared with shoots, the rice roots had higher GSH content and GST activity, indicating the ability of Cd detoxification was much higher in roots than in shoots. There was a significant correlation between Cd level and GSH content or GST activity, suggesting that both parameters may be used as biomarkers of Cd stress in rice.展开更多
A proteomic approach including two-dimensional electrophoresis and mass spectrometric (MALDI-TOF MS) analyses was used to investigate the responses to cadmium (Cd) stress in seedlings of rice (Oryza sativa L.) v...A proteomic approach including two-dimensional electrophoresis and mass spectrometric (MALDI-TOF MS) analyses was used to investigate the responses to cadmium (Cd) stress in seedlings of rice (Oryza sativa L.) varieties Shanyou 63 and Aizaizhan. Cd stress significantly inhibited root and shoot growth, and affected the global proteome in rice roots and leaves, which induced or upregulated the expression of corresponding proteins in rice roots and leaves when rice seedlings were exposed to 0.1 or 1.0 mmol/L Cd. The Cd-induced proteins are involved in chelation and compartmentation of Cd, elimination of active oxygen free radicals, detoxification of toxic substances, degradation of denatured proteins or inactivated enzymes, regulation of physiologic metabolism and induction of pathogenesis-related proteins. Comparing the Cd-induced proteins between the two vadeties, the β-glucosidase and pathogenesis-related protein family 10 proteins were more drastically induced by Cd stress in roots and leaves of Aizaizhan, and the UDP-glucose protein transglucosylase and translational elongation factor Tu were induced by 0.1 mmol/L Cd stress in roots of Shanyou 63. This may be one of the important mechanisms for higher tolerance to Cd stress in Shanyou 63 than in Aizaizhan.展开更多
It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con-centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from...It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con-centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from the main rice producing areas in China were selected, and a pot-experiment was conducted to investigate transformation of Cd in paddy soil-rice system with 0 (CK), 0.3 mg kg–1 (T1) and 0.6 mg kg–1 (T2) Cd treatments in greenhouse. The results showed that Cd concentrations of rice grains existed signiifcant difference (P<0.05) in 20 rice cultivars under the same Cd level in soil. The Cd concentrations of rice grains of the CK, T1 and T2 treatments were in the range of 0.143–0.202, 0.128–0.458 and 0.332–0.806 mg kg–1, respectively. Marked differences of the ratios of Cd concentration for soil to rice grain (BCFs) and transfer factors (TFs, root to grain and straw to grain) among the tested cultivars were observed in this study. The bioconcentration factors (BCFgrain) and TFs of the 20 rice cultivars were 0.300–1.112 and 0.342–0.817, respectively. The TFs of Cd from straw to grain ranged from 0.366 to 1.71, with signiifcant differences among these 20 rice cultivars. The bioconcentration factors (BCFgrain) and TFs among the 20 rice cultivars ranged from 0.300–1.112 and 0.342–0.817, respectively. The species-sensitivity distribu-tion (SSD) of Cd sensitivity of the rice species could be iftted wel with Burr-III (R2=0.987) based on the data of BCFs. The toxicity threshold of Cd derived from SSD for the paddy soil was 0.507 mg kg–1 in the present study.展开更多
It is of great importance to solve the threats induced by cadmium pollution on crops. This paper examined the effect of biochar on cadmium accumulation in japonica rice and revealed the mechanism underlying the respon...It is of great importance to solve the threats induced by cadmium pollution on crops. This paper examined the effect of biochar on cadmium accumulation in japonica rice and revealed the mechanism underlying the response of protective enzyme system to cadmium stress. Biochar derived from rice straw was applied at two application rates under three cadmium concentrations. Shennong 265, super japonica rice variety, was selected as the test crop. The results indicated that cadmium content in above-ground biomass of rice increased with increasing soil cadmium concentrations, but the biochar application could suppress the accumulation of cadmium to some extent. Under high concentrations of cadmium, content of free proline and MDA (malondialdehyde) were high, so did the SOD (superoxide dismutase), POD (peroxidase) and CAT (catalase) activity in the flag leaf of rice. However, the protective enzyme activities remained at low level when biochar was added.展开更多
Two rice varieties, Xiushui 110 with high cadmium (Cd) tolerance and Xiushui 11 with low Cd tolerance were used to study the effects of Cd stress on seed germination, seedling growth and amylase activities. The low ca...Two rice varieties, Xiushui 110 with high cadmium (Cd) tolerance and Xiushui 11 with low Cd tolerance were used to study the effects of Cd stress on seed germination, seedling growth and amylase activities. The low cadmium concentration had little effect on seed germination rate. However, cadmium stress could significantly inhibit plumule and radicle growth, especially for radicle growth. Germination index, vigour index, radicle length and amylase activities of Xiushui 11 decreased more significantly with the increasing cadmium level compared with Xiushui 110. The cadmium content in seedlings of Xiushui 11 was higher than that in Xiushui 110 when the cadmium concentration exceeded 5 μmol/L, which caused lower mitotic index in root tips and amylase activities, and more serious cadmium toxicity in Xiushui 11.展开更多
Accumulation characteristics and antioxidant enzyme activities in rice seedlings from a high-cadmium(Cd)-accumulating cultivar Tyou705(705)and low-Cd-accumulating cultivar Xiangzao 24(X24)were studied,based on hydropo...Accumulation characteristics and antioxidant enzyme activities in rice seedlings from a high-cadmium(Cd)-accumulating cultivar Tyou705(705)and low-Cd-accumulating cultivar Xiangzao 24(X24)were studied,based on hydroponic experiment.Three levels of calcium(Ca)(0,1.0 and 2.0 mmol?L-1)and two levels of Cd(0 and 2.7μmol·L^-1)were designed in this study.Experimental results showed that the tolerance of rice seedlings to Cd stress was significantly improved by adding 1.0 or 2.0 mmol·L^-1 Ca.Comparing with Cd control,adding 1.0 mmol·L^-1 Ca made the seedling biomass of 705 and X24 increased by 68.9%and 116.2%,respectively.Addition of 2.0 mmol·L^-1 Ca was more effective than that of 1.0 mmol·L^-1 Ca in promoting rice biomass,root tip number,total root length,and total root surface area.After addition of 2.0 mmol·L^-1 Ca and Cd contents in roots and shoots of 705 decreased by 23.5%and 35.2%,Cd in roots and shoots of X24 decreased by 22.2%and 18.7%,respectively.Addition of Ca significantly promoted the accumulation of Mg,K and Zn in shoots and roots of X24 under Cd stress environment and eliminated the inhibitory effect of Cd on the uptake of these elements.Both 1.0 and 2.0 mmol·L^-1 Ca significantly decreased the activities of superoxide dismutase(SOD)and peroxidase(POD)in rice seedlings under Cd stress.These results indicated that 1.0-2.0 mmol·L^-1 Ca could significantly reduce Cd content in rice roots and shoots,promote the uptake and accumulation of essential elements and alleviate the oxidative damage caused by Cd stress in rice seedlings.展开更多
A pot experiment was conducted to study the effects of Cd on grain Cd, K, P, Mg, Zn, Cu, Pb, Fe and Mn accumulation in two rice genotypes (Xiushui 63 and Xiushui 217) differing in grain Cd accumulation under four Cd...A pot experiment was conducted to study the effects of Cd on grain Cd, K, P, Mg, Zn, Cu, Pb, Fe and Mn accumulation in two rice genotypes (Xiushui 63 and Xiushui 217) differing in grain Cd accumulation under four Cd levels, i.e. 0, 0.5, 2.5 and 12.5 mg/kg. Rice genotype greatly affected the grain K content, but not significantly for P, Mg, Zn, Cu, Pb, Fe and Mn contents. There were remarkable effects of additional Cd on the contents of P, Mg and Zn in grains, while not significant for K, Cu, Pb, Fe and Mn contents. No significant differences were found in the interaction of genotype by additional Cd on these nine element contents. The low grain Cd accumulation genotype Xiushui 217 had significantly higher grain K, Mg, Cu and Mn contents than the high grain Cd accumulation genotype Xiushui 63, but the case was opposite for Zn, Pb and Fe contents. It also showed that Cd addition levels significantly influenced the K, P, Mg, Zn, Cu, Pb, Fe and Mn contents in rice grains. Grain K, P, Mg, Zn, Fe and Mn contents reduced with the increasing rate of Cd addition.展开更多
A pot experiment was conducted with two rice genotypes having different Cd concentrationsin their grains to study the effect of soil Cd level on biomass, Cd and Fe, Zn, Cr andPb accumulation in different plant parts. ...A pot experiment was conducted with two rice genotypes having different Cd concentrationsin their grains to study the effect of soil Cd level on biomass, Cd and Fe, Zn, Cr andPb accumulation in different plant parts. Cd was added into soil to form 4 levels, i.e.,0, 0.5, 2.5 and 12.5mgkg-1, respectively. The results showed that the Cd-induced reductionin biomass accumulation varied in both genotypes and growth stages. The Cd-inducedreduction in biomass became less with the progress of growth, and Xiushui63, a genotypewith relatively higher grain Cd concentration, was more severely inhibited than Xiushui217,a relatively lower Cd concentration. Both Cd concentration and accumulation in thevarious plant parts increased substantially with the increase of Cd levels. The differencebetween two genotypes in Cd concentration and accumulation became more pronounced withincreased Cd level as well as prolonged duration of exposure. Xuishui63 had much greaterCd accumulation than Xiushui217, in particular at late growth stage. Xuishui63 had aremarkably higher Cd translocation of roots to shoots than Xiushui217 in all Cd levels.The effect of Cd addition on four microelement concentrations in straw and milled ricealso varied in genotypes and Cd levels. Without Cd addition, Xiushui63 was significantlylower than Xiushui217 in the concentrations of all four elements in straw, while the casewas just opposite in milled rice. Zn, Fe and Pb concentrations decreased in milled ricewith the increase of Cd level, although the reduction extent differed in two genotypes.The results indicated that Cd concentration in rice grain is primarily dependent on theshoot Cd concentration, which is in turn mainly determined by Cd translocation from rootsto shoots.展开更多
To investigate the combined effects of Cd^2+ ( 0,10,100,500 μmol/L) , acetochlor (AC) (0,1.6,4.0,8.0μmol/L), and bensulfuronmethyl (BSM) ( 0,0.16,0.40,0.80 μmol/L) on the biomass,leaf soluble sugar, tota...To investigate the combined effects of Cd^2+ ( 0,10,100,500 μmol/L) , acetochlor (AC) (0,1.6,4.0,8.0μmol/L), and bensulfuronmethyl (BSM) ( 0,0.16,0.40,0.80 μmol/L) on the biomass,leaf soluble sugar, total chlorophyll (chl) content, chl a/b ratio, and Cd content in roots and shoots in the rice seedlings, pot culture experiments were conducted with rice (Oryza sativa L. ) cultivar Jinyou 402. The results showed that the Cd and AC combined treatment (Cd+ AC treatment) significantly inhibited the growth of the roots and shoots. The root dry weight/shoot dry weight (RDW/SDW) ratio, total chlorophyll content and chl a/b ratio decreased by 41%, 50%, 56% , respectively, in comparison with the control, as well as the leaf soluble sugar content, plant dry weight /plant fresh weight (PDW/PFW) ratio increased by 284% and 44% , respectively. Cd content in the roots and shoots had a decreasing tendency with the increasing concentration of AC under the Cd+AC treatment. The Cd and BSM combined treatment (Cd+BSM treatment) had a similar result to the Cd+AC treatment. The results suggest that the toxicity of Cd to rice seedlings has been enhanced due to its combination with herbicides.展开更多
Cadmium (Cd) contamination in paddy soils poses a serious threat to the production and quality of rice. Among various biochemical processes related to Cd detoxification in rice, glutathione S-transferase (GST) pla...Cadmium (Cd) contamination in paddy soils poses a serious threat to the production and quality of rice. Among various biochemical processes related to Cd detoxification in rice, glutathione S-transferase (GST) plays an important role, catalyzing Cd complexation with glutathione (GSH) and scavenging reactive oxygen species (ROS) in cells. In this study, a hydroponic experiment was conducted to investigate the response of GST isozymes in rice roots upon Cd exposure. Results showed that the GST activity in rice roots was clearly enhanced by 50 pmol/L Cd treatment for 7 d. The GST isozymes were purified by ammonium sulphate precipitation, gel filtration chromatography and affinity chromatography. After being separated by SDS-PAGE and visualized by silver staining, GSTU6 was identified by in-gel digestion, MALDI-TOF-MS analysis and peptide mass fingerprint. The results confirm the vital function of tau class rice GST in Cd detoxification.展开更多
Cadmium(Cd) intake is harmful to human health and Cd contamination in rice grains represents a severe threat to those consuming rice as a staple food. Knockout of Cd transporters is a promising strategy to reduce Cd a...Cadmium(Cd) intake is harmful to human health and Cd contamination in rice grains represents a severe threat to those consuming rice as a staple food. Knockout of Cd transporters is a promising strategy to reduce Cd accumulation in rice grains. OsNRAMP5 is the major transporter for Cd and manganese(Mn) uptake in rice. Nevertheless, it is uncertain whether knockout of OsNRAMP5 is applicable to produce low Cd rice without affecting plant growth and grain yield. In this study, we adopted CRISPR/Cas9-based gene editing technology to knock out OsNRAMP5 in two japonica varieties. We generated three independent transgene-free osnramp5 mutants and investigated the effect of osnramp5 mutations on Cd accumulation and plant growth. Hydroponic experiments showed that plant growth and chlorophyll content were significantly reduced in osnramp5 mutants at low Mn conditions, and this defective growth in the mutants could be fully rescued by supply of high levels of Mn. Cd and Mn accumulation in both roots and shoots was markedly reduced in the mutants compared to that in wild-type plants. In paddy field experiments, although Cd in flag leaves and grains was greatly reduced in osnramp5 mutants, some agronomic traits including plant height, seed setting rate, and grain number per panicle were affected in the mutants, which ultimately caused a mild reduction in grain yield. The reduced plant growth in the mutants can be attributed to a marked decrease in Mn accumulation. Our results reveal that the manipulation of OsNRAMP5 should be treated with caution: When assessing the applicability of osnramp5 mutants, soil pH and soil water content in paddy fields need to be taken into consideration, since they might affect the levels of available Mn in the soil and consequently determine the effect of the mutation on grain yield.展开更多
Cadmium (Cd) accumulation and toxicity in rice plants were characterized and identified by using brittle culm 1 (bcl), a fragile rice mutant and its wild type (Shuangkezao, an indica rice) as materials by hydrop...Cadmium (Cd) accumulation and toxicity in rice plants were characterized and identified by using brittle culm 1 (bcl), a fragile rice mutant and its wild type (Shuangkezao, an indica rice) as materials by hydroponics. The low Cd level didn't obviously affect the growth parameters in both rice genotypes, but under high Cd levels (1.0 and 5.0 μmol/L), the growth of both rice plants were substantially inhibited. Moreover, bcl tended to suffer more seriously from Cd toxicity than Shuangkezao. Cd accumulation in both rice plants increased with the increase of Cd levels. There was a significant difference in Cd accumulation between the two rice genotypes with constantly higher Cd concentration in bcl, which also accumulated more Cd at 0, 0.1, and 1.0 μmol/L Cd levels. The same case was found in the two rice plants grown on Cd-contaminated soil. This suggested that cell wall might play an important role in Cd accumulation in rice plants by the physiological mechanisms. The malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activities in rice plants were affected differently under Cd treatments, and which implied that POD might play the main role in detoxifying active oxygen free radical. A significant difference in antioxidative system between the two rice genotypes was found with constantly higher MDA content, SOD and POD activities in bcl. In summary, bcl accumulated more Cd and appeared to be more sensitive to Cd stress compared with its wild type.展开更多
[Objectives]The effects of"Glimmer"treatment on dry matter accumulation,yield and cadmium accumulation in different types of rice varieties were investigated,in order to provide a theoretical basis for the r...[Objectives]The effects of"Glimmer"treatment on dry matter accumulation,yield and cadmium accumulation in different types of rice varieties were investigated,in order to provide a theoretical basis for the regulation of low cadmium accumulation in rice grains.[Methods]Under the treatment of cadmium contaminated soil with a concentration of 0.58 mg/kg,the effects of"Glimmer"treatment on dry matter accumulation,yield and cadmium content of different rice varieties were studied by pot experiment.[Results]Spraying"Glimmer"can increase the biological yield of rice,and the different types of rice showed the order of conventional rice>two-line hybrid rice>three-line hybrid rice.Among the conventional rice,most significant increase was observed in Huanghuazhan,and in two-line hybrid rice,C Liangyou 651 increased the most.The"Glimmer"treatment had an obvious yield increasing effect on conventional rice,among which such two varieties as Xiangwanxian 13 and Huanghuazhan had the largest increases,followed by the two-line hybrid rice,and a little effect was observed on the three-line hybrid rice.The"Glimmer"treatment resulted in a significant reduction in cadmium content in different types of rice,which decreased by 13.33%-26.09%,and seven varieties showed a reduction over 21.74%.[Conclusions]The"Glimmer"treatment can significantly reduce the cadmium content in rice,and generally promote the dry matter accumulation and yield increase of rice,of which conventional rice performed better.展开更多
A pot experiment was conducted to investigate cadmium(Cd) uptake by different rice cultivars that produce white or dark grains. Four cultivars with white grains(hereafter, white rice) and five cultivars with dark colo...A pot experiment was conducted to investigate cadmium(Cd) uptake by different rice cultivars that produce white or dark grains. Four cultivars with white grains(hereafter, white rice) and five cultivars with dark colors (hereafter dark rice) were selected for this experiment. Three levels of soil Cd concentrations, background(0), 5 and 10 mg/kg, were used. After harvest, plant biomass, tissue concentrations of Cd, Ca, Fe, Cu and Zn were analyzed. The results showed that Cd concentrations are significantly different between different genotypes, but when comparing the Cd concentrations for the two groups, no significant difference was found. For other divalent cations, Ca concentrations in dark rice were higher than those in white ones(P<0.001 for shoots, P=0.037 for roots); Fe concentrations in dark rice were also higher than those in white ones(P=0.001 either in shoot or root); Zn concentrations in shoot of dark rice were higher than those in white ones, but no significant difference in roots. The total molar concentrations of divalent cations in dark rice were also significantly higher than in white rice. The potential benefit of higher Ca and Fe concentrations in dark rice and similar Cd concentrations in both groups is also discussed in this paper.展开更多
[Objectives] The rice varieties with a low cadmium (Cd) content and a high yield were screened to provide reference for further experiments on moderate and high Cd-contaminated soils and local promotion.[Methods] Unde...[Objectives] The rice varieties with a low cadmium (Cd) content and a high yield were screened to provide reference for further experiments on moderate and high Cd-contaminated soils and local promotion.[Methods] Under the soil condition of a Cd content of 0.58mg/kg,differences in agronomic traits such as grain Cd content,yield,number of effective panicles,number of grains per panicle and 1 000-grain weight of 26 different rice varieties such as Huanghuazhan,Y Liangyou 9918 and T You 109,were studied by pot experiment.[Results] Such six varieties as Xiangyou 109,Tianfengyou 316,C Liangyou 651,Y Liangyou 3218,Y Liangyou 9918 and T You 109 had a relatively higher yield and relatively lower Cd content,which was because that their traits including panicle length,number of effective panicles and 1 000-grain weight were superior to other varieties.The correlation analysis between plant Cd content and yield showed that there was a negative correlation between Cd content and yield in rice.[Conclusions] This study provides a theoretical basis for cultivating suitable varieties in this area.展开更多
In order to find out the difference in cadmium tolerance of different rice varieties in central Hunan,26 varieties of conventional rice,two-line hybrid rice and three-line hybrid rice were used as materials. The effec...In order to find out the difference in cadmium tolerance of different rice varieties in central Hunan,26 varieties of conventional rice,two-line hybrid rice and three-line hybrid rice were used as materials. The effects of cadmium stress( 0. 5 mmol/L) on germination percentage,germination index,vigor index,root length,bud length and fresh weight of root buds of rice seeds were studied by indoor bioassay.The results showed that cadmium stress had little effect on seed germination rate and germination index of different rice varieties,but had obvious effect on vigor index,root and bud growth,and the inhibitory effect of cadmium stress on root was significantly greater than that on bud.There were some differences in the mean values of six indexes among different types of rice varieties,but the differences were not significant.The tolerance responses of 26 varieties to cadmium stress were quite different. According to the cluster analysis of comprehensive effects of stress,they could be divided into three types: sensitive type,intermediate type and tolerant type. Among them,the sensitive rice varieties were Xiangwanxian 16,Y Liangyou 9918,C Liangyou 651 and Xin You 215,accounting for 15. 38% of the total tested varieties;the tolerant varieties were Y Liangyou 1 and Neixiang 2128,accounting for 7. 69% of the tested varieties;the other varieties fell within tolerant intermediate type,accounting for 76. 92%.展开更多
To understand the mechanisms of Cd uptake and accumulation in rice, soil acidification by root activities was investigated in six rice cultivars differing in Cd accumulation. The results showed a significant differenc...To understand the mechanisms of Cd uptake and accumulation in rice, soil acidification by root activities was investigated in six rice cultivars differing in Cd accumulation. The results showed a significant difference among the cultivars in pH of pot water and root exudate. Soil acidification abilities varied with rice cultivars. Both pH of pot water and root exudate were lower in indica cultivars than in japonica ones. The difference in root acidification was larger in Cd treated cultivars than the control. Under Cd stress, the pH of pot water and root exudate correlated negatively and significantly with Cd concentrations in rice plants. It was suggested that the soil acidification by root exudates, especially in Cd contaminated soils, may be one of the mechanisms responsible for Cd uptake in rice cultivars.展开更多
A rice cadmium (Cd) sensitive mutant cadB-1 was obtained using Agrobacterium tumefaciens mediated system.After exposure of cadB-1 and wild type (WT) rice seedlings to a range of Cd concentrations for 10 d,Cd accum...A rice cadmium (Cd) sensitive mutant cadB-1 was obtained using Agrobacterium tumefaciens mediated system.After exposure of cadB-1 and wild type (WT) rice seedlings to a range of Cd concentrations for 10 d,Cd accumulated to higher levels in roots,stems and leaves of both cadB-1 and WT with increasing external Cd concentrations,and the inhibition of seedling growth in cadB-1 was more serious than in WT.Hydrogen peroxide accumulation was higher in leaves and roots of cadB-1.The ratios of reduced glutathione (GSH)/oxidized glutathione (GSSG),ascorbate (ASC)/dehydroascorbate (DHA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH)/oxidized nicotinamide adenine dinucleotide phosphate (NADP+) were lower in cadB-1 than in WT both in leaves and roots under high Cd levels.The activities of ascorbate peroxidase (APX),glutathione peroxidase (GR),dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) were also lower in cadB-1 than in WT both in leaves and roots under the treatment of high levels of Cd.Our results suggest that under Cd stress,the ASC-GSH cycle was more seriously inhibited in cadB-1 than in WT,indicating that the mutant cadB-1 is less able to scavenge reactive oxygen species and sensitive to Cd.展开更多
Cadmium(Cd) is one of heavy metals harmful to human health. As rice is the main staple food in Asia and Cd is easily contaminated in rice, the molecular regulation of Cd accumulation should be explored. In this study,...Cadmium(Cd) is one of heavy metals harmful to human health. As rice is the main staple food in Asia and Cd is easily contaminated in rice, the molecular regulation of Cd accumulation should be explored. In this study, a recombinant inbred population derived from Xiang 743/Katy was grown in Cd-polluted fields and used to map the quantitative trait loci(QTLs) for Cd accumulation in rice grains. We identified seven QTLs distributed on chromosomes 2, 3, 6, 7, 8 and 10. These QTLs displayed phenotypic variances of 58.50% and 40.59% in 2014 and 2015, respectively. Two QTLs, qCd-2 and qCd-7, were identified in both the two years. qCd-2 was detected on the interval of RM250–RM207 on chromosome 2, with an LOD of 2.51 and a phenotypic contribution of 13.75% in 2014, and an LOD of 3.35 and a phenotypic contribution of 14.16% in 2015. qCd-7 co-localized with the cloned qCdT7 on chromosome 7 and may represent the correct candidate. The other five QTLs were detected only in one year. To further confirm the effects of qCd-2, a residual heterozygous line designated as RHL945, with a heterozygous interval of RM263–RM207 on chromosome 2, was selected from the recombinant inbred population and used to develop an F2 population consisting of 155 individual plants. By incorporating further simple sequence repeat markers into the segmental linkage map of the target region, qCd-2 was delimited in the interval of RM5404–RM3774, with an LOD value of 4.38 and a phenotypic contribution of 15.52%. These results reflected the genetic regulation of grain Cd in rice and paved the way for the future cloning of qCd-2.展开更多
Potential contamination of rice by heavy metals such as Cu, Co, Cd, Ar, Cr, Hg, Ni and Pb in soil, water and pesticides affects the quality and nutritional properties of rice. The aim of this study was to evaluate the...Potential contamination of rice by heavy metals such as Cu, Co, Cd, Ar, Cr, Hg, Ni and Pb in soil, water and pesticides affects the quality and nutritional properties of rice. The aim of this study was to evaluate the contamination of rice cultivated in the city of Savadkooh to Cadmium and its comparison with international standards. With the study on different areas of Savadkooh (city in Mazanaran Province) seven samples of rice with the soil in which they were grown were to take for sampling. According to the results, all samples had some Cadmium but the amount of Cd was less than the specified in National Standards and was safe for using.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.30700479)China Postdoctoral Science Foundation(Grant No.20060390288).
文摘A hydroponic culture experiment was done to investigate the effect of Cd stress on glutathione content (GSH) and glutathione S-transferase (GST, EC 2.5.1,18) activity in rice seedlings. The rice growth was severely inhibited when Cd level in the solution was higher than 10 mg/L. In rice shoots, GSH content and GST activity increased with the increasing Cd level, while in roots, GST was obviously inhibited by Cd treatments, Compared with shoots, the rice roots had higher GSH content and GST activity, indicating the ability of Cd detoxification was much higher in roots than in shoots. There was a significant correlation between Cd level and GSH content or GST activity, suggesting that both parameters may be used as biomarkers of Cd stress in rice.
基金supported by the National Natural Science Foundation of China (Grant No. 30300026)
文摘A proteomic approach including two-dimensional electrophoresis and mass spectrometric (MALDI-TOF MS) analyses was used to investigate the responses to cadmium (Cd) stress in seedlings of rice (Oryza sativa L.) varieties Shanyou 63 and Aizaizhan. Cd stress significantly inhibited root and shoot growth, and affected the global proteome in rice roots and leaves, which induced or upregulated the expression of corresponding proteins in rice roots and leaves when rice seedlings were exposed to 0.1 or 1.0 mmol/L Cd. The Cd-induced proteins are involved in chelation and compartmentation of Cd, elimination of active oxygen free radicals, detoxification of toxic substances, degradation of denatured proteins or inactivated enzymes, regulation of physiologic metabolism and induction of pathogenesis-related proteins. Comparing the Cd-induced proteins between the two vadeties, the β-glucosidase and pathogenesis-related protein family 10 proteins were more drastically induced by Cd stress in roots and leaves of Aizaizhan, and the UDP-glucose protein transglucosylase and translational elongation factor Tu were induced by 0.1 mmol/L Cd stress in roots of Shanyou 63. This may be one of the important mechanisms for higher tolerance to Cd stress in Shanyou 63 than in Aizaizhan.
基金support of the National Natural Science Foundation of China (41271490, 21077131)
文摘It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con-centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from the main rice producing areas in China were selected, and a pot-experiment was conducted to investigate transformation of Cd in paddy soil-rice system with 0 (CK), 0.3 mg kg–1 (T1) and 0.6 mg kg–1 (T2) Cd treatments in greenhouse. The results showed that Cd concentrations of rice grains existed signiifcant difference (P<0.05) in 20 rice cultivars under the same Cd level in soil. The Cd concentrations of rice grains of the CK, T1 and T2 treatments were in the range of 0.143–0.202, 0.128–0.458 and 0.332–0.806 mg kg–1, respectively. Marked differences of the ratios of Cd concentration for soil to rice grain (BCFs) and transfer factors (TFs, root to grain and straw to grain) among the tested cultivars were observed in this study. The bioconcentration factors (BCFgrain) and TFs of the 20 rice cultivars were 0.300–1.112 and 0.342–0.817, respectively. The TFs of Cd from straw to grain ranged from 0.366 to 1.71, with signiifcant differences among these 20 rice cultivars. The bioconcentration factors (BCFgrain) and TFs among the 20 rice cultivars ranged from 0.300–1.112 and 0.342–0.817, respectively. The species-sensitivity distribu-tion (SSD) of Cd sensitivity of the rice species could be iftted wel with Burr-III (R2=0.987) based on the data of BCFs. The toxicity threshold of Cd derived from SSD for the paddy soil was 0.507 mg kg–1 in the present study.
基金supported by the National Natural Science Foundation of China (41201317)the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD14B01)
文摘It is of great importance to solve the threats induced by cadmium pollution on crops. This paper examined the effect of biochar on cadmium accumulation in japonica rice and revealed the mechanism underlying the response of protective enzyme system to cadmium stress. Biochar derived from rice straw was applied at two application rates under three cadmium concentrations. Shennong 265, super japonica rice variety, was selected as the test crop. The results indicated that cadmium content in above-ground biomass of rice increased with increasing soil cadmium concentrations, but the biochar application could suppress the accumulation of cadmium to some extent. Under high concentrations of cadmium, content of free proline and MDA (malondialdehyde) were high, so did the SOD (superoxide dismutase), POD (peroxidase) and CAT (catalase) activity in the flag leaf of rice. However, the protective enzyme activities remained at low level when biochar was added.
基金supported by the Project of National Key Basic Research and Development, China (Grant No. 2002CB410804)the Natural Science Foundation of Guizhou Province, China (Grant No. 20072058)the Foundation for Young Scholars Scientists of Guizhou University (Grant No. X060036), China.
文摘Two rice varieties, Xiushui 110 with high cadmium (Cd) tolerance and Xiushui 11 with low Cd tolerance were used to study the effects of Cd stress on seed germination, seedling growth and amylase activities. The low cadmium concentration had little effect on seed germination rate. However, cadmium stress could significantly inhibit plumule and radicle growth, especially for radicle growth. Germination index, vigour index, radicle length and amylase activities of Xiushui 11 decreased more significantly with the increasing cadmium level compared with Xiushui 110. The cadmium content in seedlings of Xiushui 11 was higher than that in Xiushui 110 when the cadmium concentration exceeded 5 μmol/L, which caused lower mitotic index in root tips and amylase activities, and more serious cadmium toxicity in Xiushui 11.
基金Supported by the National Key Research and Development Program of China(2017YFD0801100)Science and Technology Innovation Project from Chinese Academy of Agricultural Sciences(CAAS-XTCX2016018)
文摘Accumulation characteristics and antioxidant enzyme activities in rice seedlings from a high-cadmium(Cd)-accumulating cultivar Tyou705(705)and low-Cd-accumulating cultivar Xiangzao 24(X24)were studied,based on hydroponic experiment.Three levels of calcium(Ca)(0,1.0 and 2.0 mmol?L-1)and two levels of Cd(0 and 2.7μmol·L^-1)were designed in this study.Experimental results showed that the tolerance of rice seedlings to Cd stress was significantly improved by adding 1.0 or 2.0 mmol·L^-1 Ca.Comparing with Cd control,adding 1.0 mmol·L^-1 Ca made the seedling biomass of 705 and X24 increased by 68.9%and 116.2%,respectively.Addition of 2.0 mmol·L^-1 Ca was more effective than that of 1.0 mmol·L^-1 Ca in promoting rice biomass,root tip number,total root length,and total root surface area.After addition of 2.0 mmol·L^-1 Ca and Cd contents in roots and shoots of 705 decreased by 23.5%and 35.2%,Cd in roots and shoots of X24 decreased by 22.2%and 18.7%,respectively.Addition of Ca significantly promoted the accumulation of Mg,K and Zn in shoots and roots of X24 under Cd stress environment and eliminated the inhibitory effect of Cd on the uptake of these elements.Both 1.0 and 2.0 mmol·L^-1 Ca significantly decreased the activities of superoxide dismutase(SOD)and peroxidase(POD)in rice seedlings under Cd stress.These results indicated that 1.0-2.0 mmol·L^-1 Ca could significantly reduce Cd content in rice roots and shoots,promote the uptake and accumulation of essential elements and alleviate the oxidative damage caused by Cd stress in rice seedlings.
基金We are deeply grateful of the Postdoctoral Science Foundation of China(Grant No.2005037824)the Science and Technology Department of Zhejiang Province,China(Grant No.2005C32007)the Science and Technology Bureau of Jiaxing,Zhejiang,China (Grant No.2006AZ1008-1 and No.2008AZ2027)for financial support
文摘A pot experiment was conducted to study the effects of Cd on grain Cd, K, P, Mg, Zn, Cu, Pb, Fe and Mn accumulation in two rice genotypes (Xiushui 63 and Xiushui 217) differing in grain Cd accumulation under four Cd levels, i.e. 0, 0.5, 2.5 and 12.5 mg/kg. Rice genotype greatly affected the grain K content, but not significantly for P, Mg, Zn, Cu, Pb, Fe and Mn contents. There were remarkable effects of additional Cd on the contents of P, Mg and Zn in grains, while not significant for K, Cu, Pb, Fe and Mn contents. No significant differences were found in the interaction of genotype by additional Cd on these nine element contents. The low grain Cd accumulation genotype Xiushui 217 had significantly higher grain K, Mg, Cu and Mn contents than the high grain Cd accumulation genotype Xiushui 63, but the case was opposite for Zn, Pb and Fe contents. It also showed that Cd addition levels significantly influenced the K, P, Mg, Zn, Cu, Pb, Fe and Mn contents in rice grains. Grain K, P, Mg, Zn, Fe and Mn contents reduced with the increasing rate of Cd addition.
基金Zhejiang Provincial Natural Science Foundation(M303510)British Council(SHA/992/310),Science and Technology Department of Zhejiang Province(2003C32049)Science and Technology Bureau of Jiaxing,Zhej iang Province,China(0110,20021034)for their financial supports.
文摘A pot experiment was conducted with two rice genotypes having different Cd concentrationsin their grains to study the effect of soil Cd level on biomass, Cd and Fe, Zn, Cr andPb accumulation in different plant parts. Cd was added into soil to form 4 levels, i.e.,0, 0.5, 2.5 and 12.5mgkg-1, respectively. The results showed that the Cd-induced reductionin biomass accumulation varied in both genotypes and growth stages. The Cd-inducedreduction in biomass became less with the progress of growth, and Xiushui63, a genotypewith relatively higher grain Cd concentration, was more severely inhibited than Xiushui217,a relatively lower Cd concentration. Both Cd concentration and accumulation in thevarious plant parts increased substantially with the increase of Cd levels. The differencebetween two genotypes in Cd concentration and accumulation became more pronounced withincreased Cd level as well as prolonged duration of exposure. Xuishui63 had much greaterCd accumulation than Xiushui217, in particular at late growth stage. Xuishui63 had aremarkably higher Cd translocation of roots to shoots than Xiushui217 in all Cd levels.The effect of Cd addition on four microelement concentrations in straw and milled ricealso varied in genotypes and Cd levels. Without Cd addition, Xiushui63 was significantlylower than Xiushui217 in the concentrations of all four elements in straw, while the casewas just opposite in milled rice. Zn, Fe and Pb concentrations decreased in milled ricewith the increase of Cd level, although the reduction extent differed in two genotypes.The results indicated that Cd concentration in rice grain is primarily dependent on theshoot Cd concentration, which is in turn mainly determined by Cd translocation from rootsto shoots.
基金Supported by Foundation for University Key Teacher by theMinistry of Education
文摘To investigate the combined effects of Cd^2+ ( 0,10,100,500 μmol/L) , acetochlor (AC) (0,1.6,4.0,8.0μmol/L), and bensulfuronmethyl (BSM) ( 0,0.16,0.40,0.80 μmol/L) on the biomass,leaf soluble sugar, total chlorophyll (chl) content, chl a/b ratio, and Cd content in roots and shoots in the rice seedlings, pot culture experiments were conducted with rice (Oryza sativa L. ) cultivar Jinyou 402. The results showed that the Cd and AC combined treatment (Cd+ AC treatment) significantly inhibited the growth of the roots and shoots. The root dry weight/shoot dry weight (RDW/SDW) ratio, total chlorophyll content and chl a/b ratio decreased by 41%, 50%, 56% , respectively, in comparison with the control, as well as the leaf soluble sugar content, plant dry weight /plant fresh weight (PDW/PFW) ratio increased by 284% and 44% , respectively. Cd content in the roots and shoots had a decreasing tendency with the increasing concentration of AC under the Cd+AC treatment. The Cd and BSM combined treatment (Cd+BSM treatment) had a similar result to the Cd+AC treatment. The results suggest that the toxicity of Cd to rice seedlings has been enhanced due to its combination with herbicides.
基金Financial supports from the National Natural Science Foundation of China(Grant No.30700479)Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20090097110035 and 20110097110004)Research Fund of State Key Laboratory of Soil and Sustainable Agriculture,Nanjing Institute of Soil Science,Chinese Academy of Science,China(Grant No.Y052010019) are greatly acknowledged
文摘Cadmium (Cd) contamination in paddy soils poses a serious threat to the production and quality of rice. Among various biochemical processes related to Cd detoxification in rice, glutathione S-transferase (GST) plays an important role, catalyzing Cd complexation with glutathione (GSH) and scavenging reactive oxygen species (ROS) in cells. In this study, a hydroponic experiment was conducted to investigate the response of GST isozymes in rice roots upon Cd exposure. Results showed that the GST activity in rice roots was clearly enhanced by 50 pmol/L Cd treatment for 7 d. The GST isozymes were purified by ammonium sulphate precipitation, gel filtration chromatography and affinity chromatography. After being separated by SDS-PAGE and visualized by silver staining, GSTU6 was identified by in-gel digestion, MALDI-TOF-MS analysis and peptide mass fingerprint. The results confirm the vital function of tau class rice GST in Cd detoxification.
基金supported by the Key Technologies R&D Program of China during the 12th Five-year Plan period (2015BAD05B04)the Jiangsu Science Fund for Distinguished Young Scholars, China (BK20150027)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDPB0404)the Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences
文摘Cadmium(Cd) intake is harmful to human health and Cd contamination in rice grains represents a severe threat to those consuming rice as a staple food. Knockout of Cd transporters is a promising strategy to reduce Cd accumulation in rice grains. OsNRAMP5 is the major transporter for Cd and manganese(Mn) uptake in rice. Nevertheless, it is uncertain whether knockout of OsNRAMP5 is applicable to produce low Cd rice without affecting plant growth and grain yield. In this study, we adopted CRISPR/Cas9-based gene editing technology to knock out OsNRAMP5 in two japonica varieties. We generated three independent transgene-free osnramp5 mutants and investigated the effect of osnramp5 mutations on Cd accumulation and plant growth. Hydroponic experiments showed that plant growth and chlorophyll content were significantly reduced in osnramp5 mutants at low Mn conditions, and this defective growth in the mutants could be fully rescued by supply of high levels of Mn. Cd and Mn accumulation in both roots and shoots was markedly reduced in the mutants compared to that in wild-type plants. In paddy field experiments, although Cd in flag leaves and grains was greatly reduced in osnramp5 mutants, some agronomic traits including plant height, seed setting rate, and grain number per panicle were affected in the mutants, which ultimately caused a mild reduction in grain yield. The reduced plant growth in the mutants can be attributed to a marked decrease in Mn accumulation. Our results reveal that the manipulation of OsNRAMP5 should be treated with caution: When assessing the applicability of osnramp5 mutants, soil pH and soil water content in paddy fields need to be taken into consideration, since they might affect the levels of available Mn in the soil and consequently determine the effect of the mutation on grain yield.
文摘Cadmium (Cd) accumulation and toxicity in rice plants were characterized and identified by using brittle culm 1 (bcl), a fragile rice mutant and its wild type (Shuangkezao, an indica rice) as materials by hydroponics. The low Cd level didn't obviously affect the growth parameters in both rice genotypes, but under high Cd levels (1.0 and 5.0 μmol/L), the growth of both rice plants were substantially inhibited. Moreover, bcl tended to suffer more seriously from Cd toxicity than Shuangkezao. Cd accumulation in both rice plants increased with the increase of Cd levels. There was a significant difference in Cd accumulation between the two rice genotypes with constantly higher Cd concentration in bcl, which also accumulated more Cd at 0, 0.1, and 1.0 μmol/L Cd levels. The same case was found in the two rice plants grown on Cd-contaminated soil. This suggested that cell wall might play an important role in Cd accumulation in rice plants by the physiological mechanisms. The malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activities in rice plants were affected differently under Cd treatments, and which implied that POD might play the main role in detoxifying active oxygen free radical. A significant difference in antioxidative system between the two rice genotypes was found with constantly higher MDA content, SOD and POD activities in bcl. In summary, bcl accumulated more Cd and appeared to be more sensitive to Cd stress compared with its wild type.
基金Supported by Hunan Provincial Financial FundHunan Hybrid Rice Research Center Project(38018136)
文摘[Objectives]The effects of"Glimmer"treatment on dry matter accumulation,yield and cadmium accumulation in different types of rice varieties were investigated,in order to provide a theoretical basis for the regulation of low cadmium accumulation in rice grains.[Methods]Under the treatment of cadmium contaminated soil with a concentration of 0.58 mg/kg,the effects of"Glimmer"treatment on dry matter accumulation,yield and cadmium content of different rice varieties were studied by pot experiment.[Results]Spraying"Glimmer"can increase the biological yield of rice,and the different types of rice showed the order of conventional rice>two-line hybrid rice>three-line hybrid rice.Among the conventional rice,most significant increase was observed in Huanghuazhan,and in two-line hybrid rice,C Liangyou 651 increased the most.The"Glimmer"treatment had an obvious yield increasing effect on conventional rice,among which such two varieties as Xiangwanxian 13 and Huanghuazhan had the largest increases,followed by the two-line hybrid rice,and a little effect was observed on the three-line hybrid rice.The"Glimmer"treatment resulted in a significant reduction in cadmium content in different types of rice,which decreased by 13.33%-26.09%,and seven varieties showed a reduction over 21.74%.[Conclusions]The"Glimmer"treatment can significantly reduce the cadmium content in rice,and generally promote the dry matter accumulation and yield increase of rice,of which conventional rice performed better.
文摘A pot experiment was conducted to investigate cadmium(Cd) uptake by different rice cultivars that produce white or dark grains. Four cultivars with white grains(hereafter, white rice) and five cultivars with dark colors (hereafter dark rice) were selected for this experiment. Three levels of soil Cd concentrations, background(0), 5 and 10 mg/kg, were used. After harvest, plant biomass, tissue concentrations of Cd, Ca, Fe, Cu and Zn were analyzed. The results showed that Cd concentrations are significantly different between different genotypes, but when comparing the Cd concentrations for the two groups, no significant difference was found. For other divalent cations, Ca concentrations in dark rice were higher than those in white ones(P<0.001 for shoots, P=0.037 for roots); Fe concentrations in dark rice were also higher than those in white ones(P=0.001 either in shoot or root); Zn concentrations in shoot of dark rice were higher than those in white ones, but no significant difference in roots. The total molar concentrations of divalent cations in dark rice were also significantly higher than in white rice. The potential benefit of higher Ca and Fe concentrations in dark rice and similar Cd concentrations in both groups is also discussed in this paper.
基金Supported by Special Financial Fund of Hunan ProvinceHunan Hybrid Rice Research Center Project(38018136)Loudi Science and Technology Planning Project(2017-17)
文摘[Objectives] The rice varieties with a low cadmium (Cd) content and a high yield were screened to provide reference for further experiments on moderate and high Cd-contaminated soils and local promotion.[Methods] Under the soil condition of a Cd content of 0.58mg/kg,differences in agronomic traits such as grain Cd content,yield,number of effective panicles,number of grains per panicle and 1 000-grain weight of 26 different rice varieties such as Huanghuazhan,Y Liangyou 9918 and T You 109,were studied by pot experiment.[Results] Such six varieties as Xiangyou 109,Tianfengyou 316,C Liangyou 651,Y Liangyou 3218,Y Liangyou 9918 and T You 109 had a relatively higher yield and relatively lower Cd content,which was because that their traits including panicle length,number of effective panicles and 1 000-grain weight were superior to other varieties.The correlation analysis between plant Cd content and yield showed that there was a negative correlation between Cd content and yield in rice.[Conclusions] This study provides a theoretical basis for cultivating suitable varieties in this area.
基金Supported by Special Financial Project of Hunan ProvinceProject of Hunan Hybrid Rice Research Center(38018136)
文摘In order to find out the difference in cadmium tolerance of different rice varieties in central Hunan,26 varieties of conventional rice,two-line hybrid rice and three-line hybrid rice were used as materials. The effects of cadmium stress( 0. 5 mmol/L) on germination percentage,germination index,vigor index,root length,bud length and fresh weight of root buds of rice seeds were studied by indoor bioassay.The results showed that cadmium stress had little effect on seed germination rate and germination index of different rice varieties,but had obvious effect on vigor index,root and bud growth,and the inhibitory effect of cadmium stress on root was significantly greater than that on bud.There were some differences in the mean values of six indexes among different types of rice varieties,but the differences were not significant.The tolerance responses of 26 varieties to cadmium stress were quite different. According to the cluster analysis of comprehensive effects of stress,they could be divided into three types: sensitive type,intermediate type and tolerant type. Among them,the sensitive rice varieties were Xiangwanxian 16,Y Liangyou 9918,C Liangyou 651 and Xin You 215,accounting for 15. 38% of the total tested varieties;the tolerant varieties were Y Liangyou 1 and Neixiang 2128,accounting for 7. 69% of the tested varieties;the other varieties fell within tolerant intermediate type,accounting for 76. 92%.
文摘To understand the mechanisms of Cd uptake and accumulation in rice, soil acidification by root activities was investigated in six rice cultivars differing in Cd accumulation. The results showed a significant difference among the cultivars in pH of pot water and root exudate. Soil acidification abilities varied with rice cultivars. Both pH of pot water and root exudate were lower in indica cultivars than in japonica ones. The difference in root acidification was larger in Cd treated cultivars than the control. Under Cd stress, the pH of pot water and root exudate correlated negatively and significantly with Cd concentrations in rice plants. It was suggested that the soil acidification by root exudates, especially in Cd contaminated soils, may be one of the mechanisms responsible for Cd uptake in rice cultivars.
基金supported by the grants from Zhejiang Gongshang University,China(Grant No.1110KU111008)the National Science Foundation of China(Grant No.20977084)
文摘A rice cadmium (Cd) sensitive mutant cadB-1 was obtained using Agrobacterium tumefaciens mediated system.After exposure of cadB-1 and wild type (WT) rice seedlings to a range of Cd concentrations for 10 d,Cd accumulated to higher levels in roots,stems and leaves of both cadB-1 and WT with increasing external Cd concentrations,and the inhibition of seedling growth in cadB-1 was more serious than in WT.Hydrogen peroxide accumulation was higher in leaves and roots of cadB-1.The ratios of reduced glutathione (GSH)/oxidized glutathione (GSSG),ascorbate (ASC)/dehydroascorbate (DHA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH)/oxidized nicotinamide adenine dinucleotide phosphate (NADP+) were lower in cadB-1 than in WT both in leaves and roots under high Cd levels.The activities of ascorbate peroxidase (APX),glutathione peroxidase (GR),dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) were also lower in cadB-1 than in WT both in leaves and roots under the treatment of high levels of Cd.Our results suggest that under Cd stress,the ASC-GSH cycle was more seriously inhibited in cadB-1 than in WT,indicating that the mutant cadB-1 is less able to scavenge reactive oxygen species and sensitive to Cd.
基金supported by Hunan Natural Science Foundation (Grant No. 2016JJ6061)Hunan Academy of Agricultural Sciences Scientific and Technological Innovation Project (Grant No. 2017NQ05)+1 种基金China National Key Research and Development Project (Grant No. 2016YFD0100101-12)the earmarked fund for China Agriculture Research System (Grant No. CARS-01-14)
文摘Cadmium(Cd) is one of heavy metals harmful to human health. As rice is the main staple food in Asia and Cd is easily contaminated in rice, the molecular regulation of Cd accumulation should be explored. In this study, a recombinant inbred population derived from Xiang 743/Katy was grown in Cd-polluted fields and used to map the quantitative trait loci(QTLs) for Cd accumulation in rice grains. We identified seven QTLs distributed on chromosomes 2, 3, 6, 7, 8 and 10. These QTLs displayed phenotypic variances of 58.50% and 40.59% in 2014 and 2015, respectively. Two QTLs, qCd-2 and qCd-7, were identified in both the two years. qCd-2 was detected on the interval of RM250–RM207 on chromosome 2, with an LOD of 2.51 and a phenotypic contribution of 13.75% in 2014, and an LOD of 3.35 and a phenotypic contribution of 14.16% in 2015. qCd-7 co-localized with the cloned qCdT7 on chromosome 7 and may represent the correct candidate. The other five QTLs were detected only in one year. To further confirm the effects of qCd-2, a residual heterozygous line designated as RHL945, with a heterozygous interval of RM263–RM207 on chromosome 2, was selected from the recombinant inbred population and used to develop an F2 population consisting of 155 individual plants. By incorporating further simple sequence repeat markers into the segmental linkage map of the target region, qCd-2 was delimited in the interval of RM5404–RM3774, with an LOD value of 4.38 and a phenotypic contribution of 15.52%. These results reflected the genetic regulation of grain Cd in rice and paved the way for the future cloning of qCd-2.
文摘Potential contamination of rice by heavy metals such as Cu, Co, Cd, Ar, Cr, Hg, Ni and Pb in soil, water and pesticides affects the quality and nutritional properties of rice. The aim of this study was to evaluate the contamination of rice cultivated in the city of Savadkooh to Cadmium and its comparison with international standards. With the study on different areas of Savadkooh (city in Mazanaran Province) seven samples of rice with the soil in which they were grown were to take for sampling. According to the results, all samples had some Cadmium but the amount of Cd was less than the specified in National Standards and was safe for using.