Object-oriented programming divides the crop production into subsystems and simulates their behaviors. Many classes were designed to simulate the behaviors of different parts or different physiological processes in cr...Object-oriented programming divides the crop production into subsystems and simulates their behaviors. Many classes were designed to simulate the behaviors of different parts or different physiological processes in crop production system. At the same time, many classes have to be employed for bettering user's interface. But how to manage these classes on a higher level to cooperate them into a perfect system is another problem to study. The Rice Growth Models (RGM) system represents an effort to define and implement a framework to manage these classes. In RGM system, the classes were organized into the model-document-view architecture to separate the domain models, data management and user interface. A single document with multiple views interface frame window was adopted in RGM. In the architectures, the simulation models only exchange data with documents while documents act as intermediacies between simulation models and interfaces. Views get data from documents and show the results to users. The classes for the different functions can be grouped into different architectures. Different architectures communicate with each other through documents. The classes for the different functions can be grouped into different architectures. By using the architecture, communication between classes is more efficient. Modeler can add classes in architectures or other architectures to extend the system without having to change system structure, which is useful for construction and maintenance of agricultural system models.展开更多
Since remote sensing can provide information on the actual status of an agricultural crop, the integration between remote sensing data and crop growth simulation models has become an important trend for yield estimati...Since remote sensing can provide information on the actual status of an agricultural crop, the integration between remote sensing data and crop growth simulation models has become an important trend for yield estimation and prediction.The main objective of this research was to combine a rice growth simulation model with remote sensing data to estimate rice grain yield for different growing seasons leading to an assessment of rice yield at regional levels. Integration between NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) data and the rice growth simulation model ORYZA1 to develop a new software, which was named as Rice-SRS Model, resulted in accurate estimates for rice yield in Shaoxing, China, with an estimation error reduced to 1.03% and 0.79% over-estimation and 0.79% under-estimation for early, single and late season rice, respectively. Selecting suitable dates for remote sensing images was an important factor which could influence estimation accuracy. Thus, given the different growing periods for each rice season, four images were needed for early and late rice, while five images were preferable for single season rice.Estimating rice yield using two or three images was possible, however, if images were obtained during the panicle initiation and heading stages.展开更多
A crop growth model of WOFOST was calibrated and validated through rice field experiments from 2001 to 2004 in Jinhua and Hangzhou, Zhejiang Province. For late rice variety Xiushui 11 and hybrid Xieyou 46, the model w...A crop growth model of WOFOST was calibrated and validated through rice field experiments from 2001 to 2004 in Jinhua and Hangzhou, Zhejiang Province. For late rice variety Xiushui 11 and hybrid Xieyou 46, the model was calibrated to obtain parameter values using the experimental data of years 2001 and 2002, then the parameters were validated by the data obtained during 2003. For single hybrid rice Liangyoupeijiu, the data recorded in 2004 and 2003 were used for calibration and validation, respectively. The main focus of the study was as follows: the WOFOST model is good in simulating rice potential growth in Zhejiang and can be used to analyze the process of rice growth and yield potential. The potential yield obtained from the WOFOST model was about 8100 kg/ha for late rice and 9300 kg/ha for single rice. The current average yield in Jinhua is only about 78% (late rice) and 70% (single rice) of their potential yield. The results of the simulation also showed that the currant practice of management at the middle and late growth stages of rice should be reexamined and improved to reach optimal rice growth.展开更多
A process model has been developed. The model has been used to calculate the methane emission from rice fields. The influence of climate conditions, field water management, organic fertilizers and soil types on methan...A process model has been developed. The model has been used to calculate the methane emission from rice fields. The influence of climate conditions, field water management, organic fertilizers and soil types on methane emission from rice fields are considered. There are three major segments which are highly interactive in nature in the model:rice growth, decomposition of soil organic matter and methane production, transport efficiency and methane emission rate. Explicit equations for modeling each segment mentioned above are given. The main results of the model are: 1. The seasonal variation of methane emission of the model output agrees with that of field experiments. The deviation of seasonal average methane emission rate between modeled value and experimental data is about 10%. 2. In the whole rice growing period, model output is similar to experimental data in the seasonal variation of transport ability of rice plant. 3. Soil organic matter content and soil physics and chemistry are major factors that determine the total season average emission rate, while soil temperature controls the temporal variation of methane emission from rice fields.展开更多
文摘Object-oriented programming divides the crop production into subsystems and simulates their behaviors. Many classes were designed to simulate the behaviors of different parts or different physiological processes in crop production system. At the same time, many classes have to be employed for bettering user's interface. But how to manage these classes on a higher level to cooperate them into a perfect system is another problem to study. The Rice Growth Models (RGM) system represents an effort to define and implement a framework to manage these classes. In RGM system, the classes were organized into the model-document-view architecture to separate the domain models, data management and user interface. A single document with multiple views interface frame window was adopted in RGM. In the architectures, the simulation models only exchange data with documents while documents act as intermediacies between simulation models and interfaces. Views get data from documents and show the results to users. The classes for the different functions can be grouped into different architectures. Different architectures communicate with each other through documents. The classes for the different functions can be grouped into different architectures. By using the architecture, communication between classes is more efficient. Modeler can add classes in architectures or other architectures to extend the system without having to change system structure, which is useful for construction and maintenance of agricultural system models.
基金Project supported by the Commission of Science, Technology and Industry for National Defence, China (No.Y97# 14-6-2).
文摘Since remote sensing can provide information on the actual status of an agricultural crop, the integration between remote sensing data and crop growth simulation models has become an important trend for yield estimation and prediction.The main objective of this research was to combine a rice growth simulation model with remote sensing data to estimate rice grain yield for different growing seasons leading to an assessment of rice yield at regional levels. Integration between NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) data and the rice growth simulation model ORYZA1 to develop a new software, which was named as Rice-SRS Model, resulted in accurate estimates for rice yield in Shaoxing, China, with an estimation error reduced to 1.03% and 0.79% over-estimation and 0.79% under-estimation for early, single and late season rice, respectively. Selecting suitable dates for remote sensing images was an important factor which could influence estimation accuracy. Thus, given the different growing periods for each rice season, four images were needed for early and late rice, while five images were preferable for single season rice.Estimating rice yield using two or three images was possible, however, if images were obtained during the panicle initiation and heading stages.
文摘A crop growth model of WOFOST was calibrated and validated through rice field experiments from 2001 to 2004 in Jinhua and Hangzhou, Zhejiang Province. For late rice variety Xiushui 11 and hybrid Xieyou 46, the model was calibrated to obtain parameter values using the experimental data of years 2001 and 2002, then the parameters were validated by the data obtained during 2003. For single hybrid rice Liangyoupeijiu, the data recorded in 2004 and 2003 were used for calibration and validation, respectively. The main focus of the study was as follows: the WOFOST model is good in simulating rice potential growth in Zhejiang and can be used to analyze the process of rice growth and yield potential. The potential yield obtained from the WOFOST model was about 8100 kg/ha for late rice and 9300 kg/ha for single rice. The current average yield in Jinhua is only about 78% (late rice) and 70% (single rice) of their potential yield. The results of the simulation also showed that the currant practice of management at the middle and late growth stages of rice should be reexamined and improved to reach optimal rice growth.
文摘A process model has been developed. The model has been used to calculate the methane emission from rice fields. The influence of climate conditions, field water management, organic fertilizers and soil types on methane emission from rice fields are considered. There are three major segments which are highly interactive in nature in the model:rice growth, decomposition of soil organic matter and methane production, transport efficiency and methane emission rate. Explicit equations for modeling each segment mentioned above are given. The main results of the model are: 1. The seasonal variation of methane emission of the model output agrees with that of field experiments. The deviation of seasonal average methane emission rate between modeled value and experimental data is about 10%. 2. In the whole rice growing period, model output is similar to experimental data in the seasonal variation of transport ability of rice plant. 3. Soil organic matter content and soil physics and chemistry are major factors that determine the total season average emission rate, while soil temperature controls the temporal variation of methane emission from rice fields.