[Objective] This study aimed to improve comprehensive utilization value of glutinous rice straw and to develop new raw material for preparation of activated carbon. [Method] Using potassium hydroxide as activator and ...[Objective] This study aimed to improve comprehensive utilization value of glutinous rice straw and to develop new raw material for preparation of activated carbon. [Method] Using potassium hydroxide as activator and glutinous rice straw as raw material, activated carbon was prepared. [Result] The optimum technological conditions for preparation of activated carbon from glutinous rice straw were as fol- lows: activator concentration of 2 mol/L, activation time of 60 min, activation tem- perature of 600 ℃ and carbonization temperature of 450℃. The adsorption values of methylene blue and iodine by activated carbon prepared from glutinous rico straw were 10.21 ml/0.1 g and 920.74 mg/g respectively under the optimal conditions. The quality of the prepared activated carbon met the grade two of water quality purifica- tion-using activated carbon quality standard. [Conclusion] This study will provide certain references for comprehensive utilization of glutinous rice straw and preparation of high-performance activated carbon.展开更多
This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activa...This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activated in a flowing N_(2) atmosphere,and the effects of the pyrolysis temperature and KOH to RH ratio on the structure of the obtained activated carbon adsorbents and their adsorption of p-nitrophenol and phenol are studied.The results show that the optimum pyrolysis temperature of RH is 750℃,whereby the highest surface area of 2047 m^(2)/g and best adsorption performance are obtained with a KOH to RH ratio of 3:1.Moreover,the obtained biocarbons achieve a maximum adsorption capacity of 175 mg/g for phenol and 430 mg/g for p-nitrophenol,which are higher than most previously reported data.展开更多
Activated carbons,RS-1,RS-2,and RS-3,prepared from rice straw with(NH4)2HPO4 activation were used as adsorbents for removing phenols from aqueous solutions.The maximum adsorption capacities of phenol for RS-1,RS-2,and...Activated carbons,RS-1,RS-2,and RS-3,prepared from rice straw with(NH4)2HPO4 activation were used as adsorbents for removing phenols from aqueous solutions.The maximum adsorption capacities of phenol for RS-1,RS-2,and RS-3 were 163.9,172.9,and 200.0 mg/g,respectively.The equilibrium data were analyzed by the Langmuir,Freundlich,and Temkin models.It displayed that Langmuir isotherm fitted to the results best.The dimensionless parameter RL indicated the favorable nature of the adsorption of phenol.Otherwise,the kinetic rates were well explained by pseudo-second-order model.According to the results,activated carbon derived from waste rice straw can be a high-performance adsorbent for wastewater treatment.展开更多
The adsorption of aluminium(III) and iron(III) ions from their single and binary systems, by RHAC was investigated in a batch system. The activated carbon prepared from rice hulls was characterized by scanning electro...The adsorption of aluminium(III) and iron(III) ions from their single and binary systems, by RHAC was investigated in a batch system. The activated carbon prepared from rice hulls was characterized by scanning electron microscopy and Fourier transformation infrared techniques. Batch adsorption experiments were performed under different operating conditions including pH (2 - 5), adsorbent dosage (0.5 - 2.0 g/l), initial ion concentration (5 - 100 mg/l), and contact time (30 - 240 min). The equilibrium time for maximum ions removal was found to be 180 min in single and binary ions systems. The kinetics of adsorption was evaluated using the pseudo-first order, pseudo-second order and Elovich kinetic models. The Langmuir, Freundlich and Temkin equilibrium models were applied to the adsorption experimental data. Real wastewater samples were collected from different locations to investigate the efficiency of rice hull activated carbon in treating real samples. The real wastewater samples were treated with the activated carbon prepared from rice hulls and a commercial activated carbon. The results showed that the activated carbon prepared in the present work was more efficient in the removal of aluminium and iron from real wastewater as compared to the commercial activated carbon which is more advantageous considering both economics and environmental parameters.展开更多
The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw retur...The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw returning to the field,and the mechanism of the decomposition of rice straw returning to the field was discussed.Completely randomized experiment of the two factors of the three levels was designed,and a total of nine treatments of indoor soil incubation tests were conducted.Full amount of rice straw was applied to the soil in this simulation experiment and different amounts of brown sugar and urea were added in the three levels of 0(no carbon source and nitrogen source),1(low levels of carbon and nitrogen sources)and 2(high levels of carbon and nitrogen sources),respectively.The results showed that the addition of different amounts of carbon and nitrogen sources to the rice straw could increase the soil carbon content.Compared with T0N0,the microbial biomass carbon of T2N2 was increased significantly by 170.48%;the dissolved organic carbon content of T1N2 was significantly increased by 58.14%and the free humic acid carbon contents of T0N2,T1N1 and T2N0 were significantly increased by 56.16%and 45.55%and 47.80%,respectively;however,there were no significant differences among those of treatments at later incubation periods.The addition of different carbon and nitrogen sources could promote the soil enzyme activities.During the incubation period,all of the soil enzyme activities of adding sugar and urea were higher than those of T0N0 treatment.Therefore,the addition of different amounts of carbon and nitrogen sources to rice straw returning could improve soil microbial biomass carbon content,dissolved organic carbon and soil enzyme activities.展开更多
Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 milli...Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 million tons of grain and 150 million tons of husk.Rice husk(RH)contains valuable biomaterials with extensive applications in various fields.The proportions of each component depend primarily on rice genotype,soil chemistry,and climatic conditions.RH and its derivatives,including ash,biochar,hydrochar,and activated carbon have been placed foreground of applications in agriculture and other industries.While the investigation on RH’s compositions,microstructures,and by-products has been done copiously,owing to its unique features,it is still an open-ended area with enormous scope for innovation,research,and technology.Here,we reviewed the latest applications of RH and its derivatives,including fuel and other energy resources,construction materials,pharmacy,medicine,and nanobiotechnology to keep this versatile biomaterial in the spotlight.展开更多
Activated carbons with large surface area, abundant microporosity and low cost are the most commonly used electrode materials for energy storage devices. However, activated carbons are conventionally made from fossil ...Activated carbons with large surface area, abundant microporosity and low cost are the most commonly used electrode materials for energy storage devices. However, activated carbons are conventionally made from fossil precursors, such as coal and petroleum, which are limited resources and easily aggregate large block in high temperature carbonization processes. In this novel work, we examined the use of rice straw as a potential alternative carbon source precursor for the production of graphene-like active carbon. A very slack activated carbon with ultra-thin two-dimensional (2D) layer structure was prepared by our proposed approach in this work, which includes a pre-treatment process and potassium hydroxide activation at high temperatures. The obtained active carbon derived from rice straw exhibited a capacitance of 255 Fig at 0.5 A/g, excellent rate capability, and long cycling capability (98% after 10,000 cycles).展开更多
The present work was mainly focused on the single and binary adsorption of methylene blue(MB)and methyl orange(MO)from alcohol aqueous solution over rice husk based activated carbon(RHAC).The study of single dye adsor...The present work was mainly focused on the single and binary adsorption of methylene blue(MB)and methyl orange(MO)from alcohol aqueous solution over rice husk based activated carbon(RHAC).The study of single dye adsorption equilibrium experiments found that the Langmuir adsorption model was consistent with the adsorption behavior of RHAC on MB and MO,indicating that it was a single layer adsorption.The adsorption behavior con-formed to the pscudo-second-order kinetic model.The binary dye adsorption experiments showed that the Lang-muir-Freundlich model could be applied to describe the adsorption behavior of RHAC on MB and MO.Comparation with the single dye system,the adsorption capacity on the binary dye system was larger,and there was"competitive adsorption"and"synergistic adsorption"effects existed.Meanwhile,the pseudo-second-order kinetic model also fit for the binary dye adsorption behavior.展开更多
Rice husk-based activated carbon was prepared with the help of zinc chloride using microwave and electrical dual-mode heating.The pore characteristics and chemical properties of rice husk-based activated carbon(RH-AC)...Rice husk-based activated carbon was prepared with the help of zinc chloride using microwave and electrical dual-mode heating.The pore characteristics and chemical properties of rice husk-based activated carbon(RH-AC)were characterized by BET,XRD,Raman spectra,FTIR and pHIEP(pH of isoelectric point).The specific surface area of RH-AC is 1719.32 m^(2)/g with a total pore volume of 1.05 cm^(3)/g.The performance of RH-AC for removing Cr(VI)from aqueous solution was examined considering the variation of the contact time(0-120 min),pH value(2.0-9.0),adsorbent dose(0.5-3.0 g/L),initial concentration(28-145 mg/L)and solvent temperature(15-45℃).The ideal pH for Cr(VI)removal is between 2.0 and 3.0 with the equilibrium time of 90 min,achieving the maximum adsorption capacity of 56.82 mg/g with the pH of 3.0.Comparable study on the established kinetic models and isotherms to simulate the removal of Cr(VI)by RH-AC was carried out to sort out the inherent mechanism of the absorption.Reasonable agreements could be obtained by the pseudo-second-order kinetic model and Langmuir,Freundlich and Tempkin isothermal models.Results from Body model simulation suggest that external mass transfer was the essential cause for rate-controlling in the adsorption process of Cr(VI).展开更多
Biomass-derived activated carbon electrode materials have been synthesized by carbonization and KOH activa- tion processes from an agriculture waste - rice husk, composed of organic compound and silica. The surface ar...Biomass-derived activated carbon electrode materials have been synthesized by carbonization and KOH activa- tion processes from an agriculture waste - rice husk, composed of organic compound and silica. The surface area of activated carbon reached 1098.1 m2/g mainly including mesopores and macropores due to the template effect of sil- ica in rice husk. Owing to the existence of mesopores and macropores, the as-obtained activated carbon materials can be used in aqueous supercapacitors, lithium-ion (Li-ion) capacitors and lithium-sulfur (Li-S) batteries. In KOH electrolyte, fast rate performance (as high as 2 V/s) was obtained due to the existence of ideal electrical double layer capacitance. In organic electrolyte, high voltage (2.5 V) was achieved. Activated carbon electrode for Li-ion capac- itor also showed capacity of 17 mAh/g at 100 mA/g with the high voltage range of 2.5 V. The capacities of sul- fur-activated carbon in Li-S batteries were 1230 and 970 mAh/g at the current densities of 0.1 and 0.2 C. The pre- sent results showed that activated carbon materials with mesopores were good host to immobilize polysulfides.展开更多
基金Supported by Guizhou Provincial College Students’ Innovative Entrepreneurial Training Program in 2014(201414440004)~~
文摘[Objective] This study aimed to improve comprehensive utilization value of glutinous rice straw and to develop new raw material for preparation of activated carbon. [Method] Using potassium hydroxide as activator and glutinous rice straw as raw material, activated carbon was prepared. [Result] The optimum technological conditions for preparation of activated carbon from glutinous rice straw were as fol- lows: activator concentration of 2 mol/L, activation time of 60 min, activation tem- perature of 600 ℃ and carbonization temperature of 450℃. The adsorption values of methylene blue and iodine by activated carbon prepared from glutinous rico straw were 10.21 ml/0.1 g and 920.74 mg/g respectively under the optimal conditions. The quality of the prepared activated carbon met the grade two of water quality purifica- tion-using activated carbon quality standard. [Conclusion] This study will provide certain references for comprehensive utilization of glutinous rice straw and preparation of high-performance activated carbon.
文摘This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activated in a flowing N_(2) atmosphere,and the effects of the pyrolysis temperature and KOH to RH ratio on the structure of the obtained activated carbon adsorbents and their adsorption of p-nitrophenol and phenol are studied.The results show that the optimum pyrolysis temperature of RH is 750℃,whereby the highest surface area of 2047 m^(2)/g and best adsorption performance are obtained with a KOH to RH ratio of 3:1.Moreover,the obtained biocarbons achieve a maximum adsorption capacity of 175 mg/g for phenol and 430 mg/g for p-nitrophenol,which are higher than most previously reported data.
基金Key Project of Shanghai Basic Research,China (No. 08JC1400500)Program for New Century Excellent Talents in University,China (No. NECT-07-0175)+1 种基金Key Project of Chinese Ministry of Education,China (No. 107046)Shanghai Leading Academic Discipline Project,China (No. B604)
文摘Activated carbons,RS-1,RS-2,and RS-3,prepared from rice straw with(NH4)2HPO4 activation were used as adsorbents for removing phenols from aqueous solutions.The maximum adsorption capacities of phenol for RS-1,RS-2,and RS-3 were 163.9,172.9,and 200.0 mg/g,respectively.The equilibrium data were analyzed by the Langmuir,Freundlich,and Temkin models.It displayed that Langmuir isotherm fitted to the results best.The dimensionless parameter RL indicated the favorable nature of the adsorption of phenol.Otherwise,the kinetic rates were well explained by pseudo-second-order model.According to the results,activated carbon derived from waste rice straw can be a high-performance adsorbent for wastewater treatment.
文摘The adsorption of aluminium(III) and iron(III) ions from their single and binary systems, by RHAC was investigated in a batch system. The activated carbon prepared from rice hulls was characterized by scanning electron microscopy and Fourier transformation infrared techniques. Batch adsorption experiments were performed under different operating conditions including pH (2 - 5), adsorbent dosage (0.5 - 2.0 g/l), initial ion concentration (5 - 100 mg/l), and contact time (30 - 240 min). The equilibrium time for maximum ions removal was found to be 180 min in single and binary ions systems. The kinetics of adsorption was evaluated using the pseudo-first order, pseudo-second order and Elovich kinetic models. The Langmuir, Freundlich and Temkin equilibrium models were applied to the adsorption experimental data. Real wastewater samples were collected from different locations to investigate the efficiency of rice hull activated carbon in treating real samples. The real wastewater samples were treated with the activated carbon prepared from rice hulls and a commercial activated carbon. The results showed that the activated carbon prepared in the present work was more efficient in the removal of aluminium and iron from real wastewater as compared to the commercial activated carbon which is more advantageous considering both economics and environmental parameters.
基金Supported by the National Key Research and Development Plan Project(2016YFD0300909-04)。
文摘The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw returning to the field,and the mechanism of the decomposition of rice straw returning to the field was discussed.Completely randomized experiment of the two factors of the three levels was designed,and a total of nine treatments of indoor soil incubation tests were conducted.Full amount of rice straw was applied to the soil in this simulation experiment and different amounts of brown sugar and urea were added in the three levels of 0(no carbon source and nitrogen source),1(low levels of carbon and nitrogen sources)and 2(high levels of carbon and nitrogen sources),respectively.The results showed that the addition of different amounts of carbon and nitrogen sources to the rice straw could increase the soil carbon content.Compared with T0N0,the microbial biomass carbon of T2N2 was increased significantly by 170.48%;the dissolved organic carbon content of T1N2 was significantly increased by 58.14%and the free humic acid carbon contents of T0N2,T1N1 and T2N0 were significantly increased by 56.16%and 45.55%and 47.80%,respectively;however,there were no significant differences among those of treatments at later incubation periods.The addition of different carbon and nitrogen sources could promote the soil enzyme activities.During the incubation period,all of the soil enzyme activities of adding sugar and urea were higher than those of T0N0 treatment.Therefore,the addition of different amounts of carbon and nitrogen sources to rice straw returning could improve soil microbial biomass carbon content,dissolved organic carbon and soil enzyme activities.
文摘Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 million tons of grain and 150 million tons of husk.Rice husk(RH)contains valuable biomaterials with extensive applications in various fields.The proportions of each component depend primarily on rice genotype,soil chemistry,and climatic conditions.RH and its derivatives,including ash,biochar,hydrochar,and activated carbon have been placed foreground of applications in agriculture and other industries.While the investigation on RH’s compositions,microstructures,and by-products has been done copiously,owing to its unique features,it is still an open-ended area with enormous scope for innovation,research,and technology.Here,we reviewed the latest applications of RH and its derivatives,including fuel and other energy resources,construction materials,pharmacy,medicine,and nanobiotechnology to keep this versatile biomaterial in the spotlight.
基金financially supported by the Fundamental Research Funds for the Central Universities(Nos.XDJK2017D003,XDJK2017B055)the Program for Excellent Talents in Chongqing(No.102060-20600218)+1 种基金the Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.CXTDX201601011)the Chinese Government Scholarship(No.2016AUN032)
文摘Activated carbons with large surface area, abundant microporosity and low cost are the most commonly used electrode materials for energy storage devices. However, activated carbons are conventionally made from fossil precursors, such as coal and petroleum, which are limited resources and easily aggregate large block in high temperature carbonization processes. In this novel work, we examined the use of rice straw as a potential alternative carbon source precursor for the production of graphene-like active carbon. A very slack activated carbon with ultra-thin two-dimensional (2D) layer structure was prepared by our proposed approach in this work, which includes a pre-treatment process and potassium hydroxide activation at high temperatures. The obtained active carbon derived from rice straw exhibited a capacitance of 255 Fig at 0.5 A/g, excellent rate capability, and long cycling capability (98% after 10,000 cycles).
基金Supported by the National Natural Science Foundation of China(No.21501069)the National Key R&D Program During the 13th Five-year Plan of China(No.2016YFD0401405)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.JUSRP51626B)MOE&SAFEA for the"111 Project"of China(No.B13025).
文摘The present work was mainly focused on the single and binary adsorption of methylene blue(MB)and methyl orange(MO)from alcohol aqueous solution over rice husk based activated carbon(RHAC).The study of single dye adsorption equilibrium experiments found that the Langmuir adsorption model was consistent with the adsorption behavior of RHAC on MB and MO,indicating that it was a single layer adsorption.The adsorption behavior con-formed to the pscudo-second-order kinetic model.The binary dye adsorption experiments showed that the Lang-muir-Freundlich model could be applied to describe the adsorption behavior of RHAC on MB and MO.Comparation with the single dye system,the adsorption capacity on the binary dye system was larger,and there was"competitive adsorption"and"synergistic adsorption"effects existed.Meanwhile,the pseudo-second-order kinetic model also fit for the binary dye adsorption behavior.
基金the National Key R&D Program of China(Grant No.2019YFC1906805).
文摘Rice husk-based activated carbon was prepared with the help of zinc chloride using microwave and electrical dual-mode heating.The pore characteristics and chemical properties of rice husk-based activated carbon(RH-AC)were characterized by BET,XRD,Raman spectra,FTIR and pHIEP(pH of isoelectric point).The specific surface area of RH-AC is 1719.32 m^(2)/g with a total pore volume of 1.05 cm^(3)/g.The performance of RH-AC for removing Cr(VI)from aqueous solution was examined considering the variation of the contact time(0-120 min),pH value(2.0-9.0),adsorbent dose(0.5-3.0 g/L),initial concentration(28-145 mg/L)and solvent temperature(15-45℃).The ideal pH for Cr(VI)removal is between 2.0 and 3.0 with the equilibrium time of 90 min,achieving the maximum adsorption capacity of 56.82 mg/g with the pH of 3.0.Comparable study on the established kinetic models and isotherms to simulate the removal of Cr(VI)by RH-AC was carried out to sort out the inherent mechanism of the absorption.Reasonable agreements could be obtained by the pseudo-second-order kinetic model and Langmuir,Freundlich and Tempkin isothermal models.Results from Body model simulation suggest that external mass transfer was the essential cause for rate-controlling in the adsorption process of Cr(VI).
基金Financial support from the National Natural Science Foundation of China (Grant Nos. 91434118, 21601176), the National Natural Science Foundation for Creative Research Group (Grant No. 21521092), the External Cooperation Program of BIC, Chinese Academy of Sciences (Grant No. 121522KYS820150009), the Hun- dred Talents Program of the Chinese Academy of Sci- ences, and Jilin Provincial Science and Technology De-velopment Program of China (Grant No. 20160520002JH) is acknowledged.
文摘Biomass-derived activated carbon electrode materials have been synthesized by carbonization and KOH activa- tion processes from an agriculture waste - rice husk, composed of organic compound and silica. The surface area of activated carbon reached 1098.1 m2/g mainly including mesopores and macropores due to the template effect of sil- ica in rice husk. Owing to the existence of mesopores and macropores, the as-obtained activated carbon materials can be used in aqueous supercapacitors, lithium-ion (Li-ion) capacitors and lithium-sulfur (Li-S) batteries. In KOH electrolyte, fast rate performance (as high as 2 V/s) was obtained due to the existence of ideal electrical double layer capacitance. In organic electrolyte, high voltage (2.5 V) was achieved. Activated carbon electrode for Li-ion capac- itor also showed capacity of 17 mAh/g at 100 mA/g with the high voltage range of 2.5 V. The capacities of sul- fur-activated carbon in Li-S batteries were 1230 and 970 mAh/g at the current densities of 0.1 and 0.2 C. The pre- sent results showed that activated carbon materials with mesopores were good host to immobilize polysulfides.
文摘采用N2吸附、CO2吸附和热重红外联用等技术手段,考察了在KOH活化稻壳炭的过程中碱炭比和活化温度对活性炭极微孔的影响。结果表明:在不同碱炭比(0.6︰1~3︰1)和活化温度(640~780℃)下制备的稻壳活性炭,极微孔主要分布在0.42~0.70 nm。当碱炭比增加时,极微孔孔容先增大后减小;而当活化温度升高时,极微孔孔容呈降低趋势。极微孔率随碱炭比或活化温度的升高而单调递减。在活化温度为640℃、碱炭比为1:1时,可得极微孔孔容为0.149 m L/g、极微孔率达36.3%的微孔活性炭。活性炭的极微孔孔容与其在104 Pa时的CO2吸附量高度线性相关。