The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate dur...The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate during seedling production while reducing the number of seedling trays.This study conducted field experiments from 2021 to 2022,using transplanting seedling ages of 10 and 15 days to explore the effects of 250,300,and 350 g/tray on the seedling quality,mechanical transplantation quality,yields,and economic benefits of rice.The commonly used combination of 150 g/tray with a 20-day seedling age in rice production was used as CK.The cultivation of seedlings under a high seeding rate and short seedling age significantly affected seedling characteristics,but there was no significant difference in seedling vitality compared to CK.The minimum number of rice trays used in the experiment was observed in the treatment of 350-10(300 g/tray and 10-day seedling age),only 152-155 trays ha^(-1),resulting in a 62%reduction in the number of trays needed.By increasing the seeding rate of rice,missed holes during mechanical transplantation decreased by 2.8 to 4%.The treatment of 300-15(300 g/tray and 15-day seedling age)achieved the highest yields and economic gains.These results indicated that using crop straw boards can reduce the application of seedling trays.On that basis,rice yields can be increased by raising the seeding rate and shortening the seedling age of rice without compromising seedling quality.展开更多
Long-term storage of crop seeds is critical for the conservation of germplasm resources, ensuring food supply, and supporting sustainable production. Rice, as a major food staple, has a substantial stock for consumpti...Long-term storage of crop seeds is critical for the conservation of germplasm resources, ensuring food supply, and supporting sustainable production. Rice, as a major food staple, has a substantial stock for consumption and production worldwide. However, its food value and seed viability tend to decline during storage. Understanding the physiological responses and molecular mechanisms of aging tolerance forms the basis for enhancing seed storability in rice. This review outlines the latest progress in influential factors, evaluation methods, and identification indices of seed storability. It also discusses the physiological consequences, molecular mechanisms, and strategies for breeding aging-tolerant rice in detail. Finally, it highlights challenges in seed storability research that require future attention. This review offers a theoretical foundation and research direction for uncovering the mechanisms behind seed storability and breeding aging-tolerant rice.展开更多
Salinity-alkalinity is incipient abiotic stress that impairs plant growth and development.Rice(Oryza sativa)is a major food crop greatly affected by soil salinity and alkalinity,requiring tolerant varieties in the sal...Salinity-alkalinity is incipient abiotic stress that impairs plant growth and development.Rice(Oryza sativa)is a major food crop greatly affected by soil salinity and alkalinity,requiring tolerant varieties in the saline-alkali prone areas.Understanding the molecular and physiological mechanisms of saline-alkali tolerance paves the base for improving saline-alkali tolerance in rice and leads to progress in breeding.This review illustrated the physiological consequences,and molecular mechanisms especially signaling and function of regulating genes for saline-alkali tolerance in rice plants.We also discussed QTLs regarding saline-alkali tolerance accordingly and ways of deployment for improvement.More efforts are needed to identify and utilize the identified QTLs for saline-alkali tolerance in rice.展开更多
Light intensity is one of the most important environmental factors that determine the basic characteristics of rice development. However, continuously cloudy weather or rainfall, especially during the grain-filling st...Light intensity is one of the most important environmental factors that determine the basic characteristics of rice development. However, continuously cloudy weather or rainfall, especially during the grain-filling stage, induces a significant loss in yield and results in poor grain quality. Stress caused by low light often creates severe meteorological disasters in some rice-growing regions worldwide. This review was based on our previous research and related research regarding the effects of low light on rice growth, yield and quality as well as the formation of grain, and mainly reviewed the physiological metabolism of rice plants, including characteristics of photosynthesis, activities of antioxidant enzymes in rice leaves and key enzymes involved in starch synthesis in grains, as well as the translocations of carbohydrate and nitrogen. These characteristics include various grain yield and rice quality components (milling and appearance as well as cooking, eating and nutritional qualities) under different rates of shading imposed at the vegetative or reproductive stages of rice plants. Furthermore, we discussed why grain yield and quality are reduced under the low light environment. Next, we summarized the need for future research that emphasizes methods can effectively improve rice grain yield and quality under low light stress. These research findings can provide a beneficial reference for rice cultivation management and breeding program in low light environments.展开更多
[Objective] The experiment aimed to explore physiological and biochemical changes of leaves after plants were mutated. [Method] A rice double mutant with stripes on stems, leaves and spikelets were taken as experiment...[Objective] The experiment aimed to explore physiological and biochemical changes of leaves after plants were mutated. [Method] A rice double mutant with stripes on stems, leaves and spikelets were taken as experimental materials to study the enzyme activity changes in different growth stages and amino acid variation in rice. [ Result] The SOD activity in mutant was higher than that in wild plant at tillering metaphase, but lower than that in wild type before heading stage and late flowering; the POD activity in three stages increased firstly then declined and the activity showed highest maximal activity at before heading stage. However, the POD activity in wild type showed the opposite change trend; the CAT activity presented degression at three stages, especially high at tillering metaphase, but reverse changes in wild type; the MDA activity decreased at three stages, but it was still higher than that in wild type, besides, the soluble sugar content of mutant was lower, but total amino acid content was increased. [ Conclusion] The expression of mutant characteristics was correlated with SOD, POD, CAT and MDA activity Changes and these changes made the mutant survive and rice quality change at last.展开更多
In order to investigate the effects of seed rate on root twining power and seedling quality of machine-transplanted super rice cultivars, Yongyou 12 and Zhongzheyou No.l, total 6 seed rates were arranged, and the grow...In order to investigate the effects of seed rate on root twining power and seedling quality of machine-transplanted super rice cultivars, Yongyou 12 and Zhongzheyou No.l, total 6 seed rates were arranged, and the growth characteris- tics, quality and root twining power of machine-transplanted rice seedlings were studied. The results showed that seed rate had great effects on root twining power and qualityof rice seedlings; with the increase of seed rate, the root twining power of rice seedlings was increased, but the quality of rice seedlings was significantly reduced; under the condition of high seed rate, rice seedlings were weak with less accumulate dry matter and nonuniform growth, and the proportion of weak seedlings was higher. When the seed rate of both rice cultivars was reduced by 10 g/tray, the average seedling height was increased by 0.5 cm, leaf age was increased by 0.1, stem base diameter was increased by 0.1 cm, and root number per plant was increased by 0.3. When the seed rate was increased by 10 g/tray, the accumulated dry matter per plant was reduced by 5.1 mg. With the increase of seed rate, the seedling quality of Zhongzheyou No.1 was decreased rapidly, and the proportion of weak seedlings was increased rapidly. However, Yongyou 12 has a larger elasticity in seed rate. When the seed rate reached to 50 g/tray, blanket seedlings of Yongy- ou 12 were nursed with uniform growth and higher quality, but the shoots were sparse with lower leaf area index. However, when the seed rate was up to 50 g/tray, blanket seedlings of Zhongzheyou No.1 were nursed with uniform growth and higher quality, as well as higher-density shoots. From a comprehensive point of view, the optimum seed rates of Yongyou 12 and Zhongzheyou No.1 were 65 and 50 g/tray, respectively.展开更多
The physiological mechanism of photosynthetic function and senescence of rice leaves was studied by using early rice variety Baliangyou 100 and late rice variety Weiyou 46, treated with controlled-release nitrogen fer...The physiological mechanism of photosynthetic function and senescence of rice leaves was studied by using early rice variety Baliangyou 100 and late rice variety Weiyou 46, treated with controlled-release nitrogen fertilizer (CRNF), urea and no nitrogen fertilizer. CRNF showed obvious effects on delaying the senescence and prolonging photosynthetic function duration of rice leaves. Compared with urea, CRNF could significantly increase the chlorophyll content of functional leaves in both early and late rice varieties, and this difference between the treatments became larger as rice growth progressed; CRNF increased the activities of active oxygen scavenging enzymes super oxide dismutase (SOD) and peroxidase (POD), and decreased the accumulation amount of malondialdehyde (MDA) in functional leaves during leaf aging; Photosynthetic rate of functional leaves in CRNF treatment was significantly higher than that in urea treatment. The result also indicated that CRNF could effectively regulate the contents of indole-3-acetic acid (IAA) and abscisic acid (ABA) in functional leaves; IAA content was higher and ABA content was lower in CRNF treatment than those in urea treatment. Therefore, application of CRNF could increase the rice yield significantly due to these physiological changes in the functional leaves.展开更多
The research selected 16 rice varieties(8 early and 8 late double-cropping rice) by mechanical transplanting modes as per equivalent row and wide-narrow row to explore yield and physiological traits in order to prov...The research selected 16 rice varieties(8 early and 8 late double-cropping rice) by mechanical transplanting modes as per equivalent row and wide-narrow row to explore yield and physiological traits in order to provide references for selection of rice variety suitable for mechanical transplanting. The results showed that yields of early and late rice improved by 2.90% and 2.73% by mechanical transplanting as per equivalent row and wide-narrow row respectively. Besides, leaf area index in the treatment as per wide-narrow row was higher compared with the treatment as per equivalent row, as well as average photosynthetic potential which grew by 0.92%,3.99% and 5.64% of early from tillering-peak stage to mature stage and 3.46%,7.09% and 6.79% of late rice. Furthermore, by mechanical transplanting as per wide-narrow row, SPAD value, and root activity performer higher, as well as the number of differentiated branch and glumous flowers, but degradation rate showed lower. In addition, with mechanical transplanting the same, early rice Zhuliangyou819 and late rice Fengyuanyou 299 took advantages in yield, which can be priorities for mechanical transplanting in double-cropping areas in Jiangxi Province.展开更多
To better understand the effect and mechanism of cold tolerant seed-coating agents on the cold tolerance of rice seedlings, the physiological and biochemical effects of four cold tolerant seed-coating agents (HET, YK...To better understand the effect and mechanism of cold tolerant seed-coating agents on the cold tolerance of rice seedlings, the physiological and biochemical effects of four cold tolerant seed-coating agents (HET, YKJ, YKZYJ, and the ABA seed coating agents) on two early indica rice varieties were studied under chilling stress. The results showed that the rice seedlings treated with cold tolerant seed-coating agents under chilling stress maintained dramatically higher root vigor, POD, CAT and SOD activities, and chlorophyll content, had lower MDA content and electrolyte leakage, and accumulated more soluble sugar and free proline, when compared with the control without the treatment, and finally showed lower plant injury rate. It was indicated that the cold tolerant seed coating agent improved the ability of rice seedlings in resisting to chilling stress. YKZYJ was ranked the first in terms of the efficiency in cold tolerance among the four cold tolerant seed-coating agents tested.展开更多
This study was conducted to investigate the effects of soilless substrates of hydroponically grown long-mat seedlings (HLMS) on seedling quality and field growth characteristics of transplanted super japonica rice. ...This study was conducted to investigate the effects of soilless substrates of hydroponically grown long-mat seedlings (HLMS) on seedling quality and field growth characteristics of transplanted super japonica rice. A widely grown conventional super japonica rice cultivar (Wuyunjing 23) was selected as the test material. The effect of HLMS on seedling quality, mechanical transplantation quality, field growth characteristics, yield, and benefit-cost ratio were compared with seedlings grown in organic substrates and traditional nutritive soil, whJch was selected as the control. Root number, root twJstJng power and root activity of seedlings cultivated by HLMS were decreased compared to that of the organic substrates andcontrol. However, seedling root length as well as aboveground growth were increased compared to the organic substrates and control seed- lings. In the HLMS, the content of gibberellin acid (GA3) decreased while abscisic acid (ABA) content increased compared to that of the organic substrates and control seedlings. During the early stages after transplanting, the re-greening of HLMS was delayed compared to that of the organic substrates and control seedlings. Nevertheless, there were no significant differences in tiller dynamics and crop yield among the HLMS, organic substrates and control treatments. The effects of HLMS on seedling production were similar to those of the organic substrates and traditional nutritive soil in the present study, suggesting that HLMS have the potential to replace traditional nutritive soil in seedling production without decreasing crop yield. Finally, it is important to reduce organic substrates and topsoil dependence during rice seedling production and worthwhile to consider HLMS popularization and its application on a larger scale.展开更多
This study was designed to elucidate the grain filling characteristics and the causes of poor grain plumpness of some two-line hybrid rice combinations and their hormonal mechanism. Six varieties, including three two-...This study was designed to elucidate the grain filling characteristics and the causes of poor grain plumpness of some two-line hybrid rice combinations and their hormonal mechanism. Six varieties, including three two-line hybrid rice combinations, that show differences in seed-setting and grain filling, were used. And the contents of starch, sucrose, zeatin (Z) + zeatin riboside (ZR), indole-3-acetic acid (IAA), and abscisic acid (ABA), the ethylene evolution rate, activities of sucrose synthase (SuSase) and starch synthase (StSase) in grains, the seed-setting and grain filling rate were investigated. The correlations amongst these were analyzed. The results showed that the poor grain filling of two-line hybrids was mainly attributed to the higher unfilled grain rate and the lower filling degree of inferior grains. During the early and mid grain filling periods, the sucrose content in inferior grains was greater than that in superior grains for the combinations with poor grain filling, indicating that the substrate concentration was not the principal factor for their slow grain filling and poor grain plumpness of the inferior grains of two-line hybrids. Z + ZR, IAA, and ABA in superior grains were obviously greater than those in inferior grains at early grain filling stage. The maximum and mean contents of Z + ZR, IAA, and ABA were positively very significantly correlated with the maximum and mean grain-filling rate, filling degree, and grain weight. The evolution rate of ethylene was greater in inferior grains than in superior grains and greater for the combinations with poor grain plumpness than those with good grain plumpness at the early or mid filling stages. The evolution rate of ethylene was negatively and significantly correlated with the grain filling rate, the grain filling degree, and the grain weight. Spraying ethephon (ethylene-releasing agent) at the early grain filling stage increased the evolution rate of ethylene, reduced the ABA content and activities of SuSase and StSase, and decreased the grain filling degree and the grain weight. The results were reversed when cobatous nitrate (an inhibitor of ethylene synthesis) was applied. The results suggested that the hormones and their balance play a role in the regulation of grain filling and enzymatic activities, and the poor grain filling is attributed to the low contents of Z + ZR, IAA, and ABA, and the high evolution rate of ethylene in the inferior grains of some two-line hybrid rice combinations. The results suggested that hormones play important roles in the grain filling of some two-line hybrid rice combinations, and their filling degree can be improved by regulating the hormonal contents.展开更多
Amylose content is a key determinant of eating quality of rice. With the characteristics offluffy texture, glossy appearance when cooked, remaining soft when cooled and excellentpuffing ability, the low-amylose rice w...Amylose content is a key determinant of eating quality of rice. With the characteristics offluffy texture, glossy appearance when cooked, remaining soft when cooled and excellentpuffing ability, the low-amylose rice with amylose content 5-15% could be served as not onlycooked rice directly, but also good material for convenience, mixed rice and puffing foods.Current status on characterization, inheritance, molecular mechanism and breeding of low-amylose content rice was reviewed in this paper, strategy of related researches in the era ofglymics was mainly discussed furthermore. The future research should focus on screening andenhancing the germplasm, further elucidating the molecular mechanism on mutation of lowamylose content, utilizing the genes independent of Wx on low-amylose content rice breedingprogram, and developing high quality functional rice cultivars for special usage throughpyramiding low amylose gene and other special quality genes.展开更多
Leaf rolling(LR)is one of the defensive mechanisms that plants have developed against adverse environmental conditions.LR is a typical drought response,promoting drought resistance in various gramineae species,includi...Leaf rolling(LR)is one of the defensive mechanisms that plants have developed against adverse environmental conditions.LR is a typical drought response,promoting drought resistance in various gramineae species,including wheat,maize,and rice.Rice cultivation faces the formidable challenge of water deprivation because of its high water requirements,which leads to drought-related symptoms in rice.LR is an important morphological characteristic that plays a key role in controlling water loss during water insufficiency,thereby regulating leaf area and stature,which are crucial agronomic traits determining yield criteria.Bulliform,sclerenchyma,mesophyll,and vascular bundles are the cells that engage in LR and commonly exhibit adaxial or abaxial types of rolling in rice.The specific genes linked to rolling,either adaxially or abaxially,are discussed here.In addition to the factors influencing LR,here is a short review of the morphological,physiological and molecular responses of this adaptation under drought stress.Moreover,this review highlights how LR combats the consequences of drought stress.The eco-physiological and molecular mechanisms underlying this morphological adaptation in rice should be further explored,as they might be useful in dealing with various degrees of drought tolerance.展开更多
The main goals of rice breeding nowadays include increasing yield,improving grain quality,and promoting complete mechanized production to save labor costs.Rice grain shape,specified by three dimensions,including grain...The main goals of rice breeding nowadays include increasing yield,improving grain quality,and promoting complete mechanized production to save labor costs.Rice grain shape,specified by three dimensions,including grain length,width and thickness,has a more precise meaning than grain size,contributing to grain appearance quality as well as grain weight and thus yield.Furthermore,the divergence of grain shape characters could be utilized in mechanical seed sorting in hybrid rice breeding systems,which has been succeeded in utilizing heterosis to achieve substantial increase in rice yield in the past decades.Several signaling pathways that regulate rice grain shape have been elucidated,including G protein signaling,ubiquitination-related pathway,mitogen-activated protein kinase signaling,phytohormone biosynthesis and signaling,micro RNA process,and some other transcriptional regulatory pathways and regulators.This review summarized the recent progress on molecular mechanisms underlying rice grain shape determination and the potential of major genes in future breeding applications.展开更多
Optimized high-yielding cultivation is of great significance to ensure stable and high yield of rice in China. This paper reviewed several super high-yielding cultivation modes, analyzed the effects of different culti...Optimized high-yielding cultivation is of great significance to ensure stable and high yield of rice in China. This paper reviewed several super high-yielding cultivation modes, analyzed the effects of different cultivation modes on rice agronomic traits and physiological characteristics, and discussed the advances in rice mechanized cultivation and mode. Finally, the future development prospects of rice cultivation were put forward.展开更多
基金funded by the Jiangsu Key Research Program,China(BE2022338)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(23)3107)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(22KJB210004)the Jiangsu Province Agricultural Major Technology Collaborative Promotion Project,China(2022-ZYXT-04-1)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX23_3569)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate during seedling production while reducing the number of seedling trays.This study conducted field experiments from 2021 to 2022,using transplanting seedling ages of 10 and 15 days to explore the effects of 250,300,and 350 g/tray on the seedling quality,mechanical transplantation quality,yields,and economic benefits of rice.The commonly used combination of 150 g/tray with a 20-day seedling age in rice production was used as CK.The cultivation of seedlings under a high seeding rate and short seedling age significantly affected seedling characteristics,but there was no significant difference in seedling vitality compared to CK.The minimum number of rice trays used in the experiment was observed in the treatment of 350-10(300 g/tray and 10-day seedling age),only 152-155 trays ha^(-1),resulting in a 62%reduction in the number of trays needed.By increasing the seeding rate of rice,missed holes during mechanical transplantation decreased by 2.8 to 4%.The treatment of 300-15(300 g/tray and 15-day seedling age)achieved the highest yields and economic gains.These results indicated that using crop straw boards can reduce the application of seedling trays.On that basis,rice yields can be increased by raising the seeding rate and shortening the seedling age of rice without compromising seedling quality.
基金funded by the Postgraduate Scientific Research Innovative Project of Hunan Province, China (Grant No. QL20220107)the Science and Technology Innovation Program of Hunan Province, China (Grant Nos. 2021RC4066 and 2023NK1010)the Special Funds for the Construction of Innovative Provinces in Hunan Province, China (Grant No. 2021NK1012)。
文摘Long-term storage of crop seeds is critical for the conservation of germplasm resources, ensuring food supply, and supporting sustainable production. Rice, as a major food staple, has a substantial stock for consumption and production worldwide. However, its food value and seed viability tend to decline during storage. Understanding the physiological responses and molecular mechanisms of aging tolerance forms the basis for enhancing seed storability in rice. This review outlines the latest progress in influential factors, evaluation methods, and identification indices of seed storability. It also discusses the physiological consequences, molecular mechanisms, and strategies for breeding aging-tolerant rice in detail. Finally, it highlights challenges in seed storability research that require future attention. This review offers a theoretical foundation and research direction for uncovering the mechanisms behind seed storability and breeding aging-tolerant rice.
基金funded by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B020219004)the Hainan Yazhou Bay Seed Lab(Grant No.B21HJ0216)the Agricultural Science and Technology Innovation Program and the Cooperation and Innovation Mission,China(Grant No.CAAS-ZDXT202001)。
文摘Salinity-alkalinity is incipient abiotic stress that impairs plant growth and development.Rice(Oryza sativa)is a major food crop greatly affected by soil salinity and alkalinity,requiring tolerant varieties in the saline-alkali prone areas.Understanding the molecular and physiological mechanisms of saline-alkali tolerance paves the base for improving saline-alkali tolerance in rice and leads to progress in breeding.This review illustrated the physiological consequences,and molecular mechanisms especially signaling and function of regulating genes for saline-alkali tolerance in rice plants.We also discussed QTLs regarding saline-alkali tolerance accordingly and ways of deployment for improvement.More efforts are needed to identify and utilize the identified QTLs for saline-alkali tolerance in rice.
文摘Light intensity is one of the most important environmental factors that determine the basic characteristics of rice development. However, continuously cloudy weather or rainfall, especially during the grain-filling stage, induces a significant loss in yield and results in poor grain quality. Stress caused by low light often creates severe meteorological disasters in some rice-growing regions worldwide. This review was based on our previous research and related research regarding the effects of low light on rice growth, yield and quality as well as the formation of grain, and mainly reviewed the physiological metabolism of rice plants, including characteristics of photosynthesis, activities of antioxidant enzymes in rice leaves and key enzymes involved in starch synthesis in grains, as well as the translocations of carbohydrate and nitrogen. These characteristics include various grain yield and rice quality components (milling and appearance as well as cooking, eating and nutritional qualities) under different rates of shading imposed at the vegetative or reproductive stages of rice plants. Furthermore, we discussed why grain yield and quality are reduced under the low light environment. Next, we summarized the need for future research that emphasizes methods can effectively improve rice grain yield and quality under low light stress. These research findings can provide a beneficial reference for rice cultivation management and breeding program in low light environments.
基金Supported by Program for New Century Excellent Talents in University(NCET-04-0907)the Innovative Research Team in University (IRT0453)~~
文摘[Objective] The experiment aimed to explore physiological and biochemical changes of leaves after plants were mutated. [Method] A rice double mutant with stripes on stems, leaves and spikelets were taken as experimental materials to study the enzyme activity changes in different growth stages and amino acid variation in rice. [ Result] The SOD activity in mutant was higher than that in wild plant at tillering metaphase, but lower than that in wild type before heading stage and late flowering; the POD activity in three stages increased firstly then declined and the activity showed highest maximal activity at before heading stage. However, the POD activity in wild type showed the opposite change trend; the CAT activity presented degression at three stages, especially high at tillering metaphase, but reverse changes in wild type; the MDA activity decreased at three stages, but it was still higher than that in wild type, besides, the soluble sugar content of mutant was lower, but total amino acid content was increased. [ Conclusion] The expression of mutant characteristics was correlated with SOD, POD, CAT and MDA activity Changes and these changes made the mutant survive and rice quality change at last.
基金Supported by National Rice Industry Technology System(CARS-01-04A)National Key Technology Research and Development Program(2012BAD07B02)+1 种基金Ministry of Science and Technology’s Special Fund for Technology Development and Research of Research Institutes(2013EG134237)National Nonprofit Institute Research Grant of CATAS-TCGRI(2012RG005-3)~~
文摘In order to investigate the effects of seed rate on root twining power and seedling quality of machine-transplanted super rice cultivars, Yongyou 12 and Zhongzheyou No.l, total 6 seed rates were arranged, and the growth characteris- tics, quality and root twining power of machine-transplanted rice seedlings were studied. The results showed that seed rate had great effects on root twining power and qualityof rice seedlings; with the increase of seed rate, the root twining power of rice seedlings was increased, but the quality of rice seedlings was significantly reduced; under the condition of high seed rate, rice seedlings were weak with less accumulate dry matter and nonuniform growth, and the proportion of weak seedlings was higher. When the seed rate of both rice cultivars was reduced by 10 g/tray, the average seedling height was increased by 0.5 cm, leaf age was increased by 0.1, stem base diameter was increased by 0.1 cm, and root number per plant was increased by 0.3. When the seed rate was increased by 10 g/tray, the accumulated dry matter per plant was reduced by 5.1 mg. With the increase of seed rate, the seedling quality of Zhongzheyou No.1 was decreased rapidly, and the proportion of weak seedlings was increased rapidly. However, Yongyou 12 has a larger elasticity in seed rate. When the seed rate reached to 50 g/tray, blanket seedlings of Yongy- ou 12 were nursed with uniform growth and higher quality, but the shoots were sparse with lower leaf area index. However, when the seed rate was up to 50 g/tray, blanket seedlings of Zhongzheyou No.1 were nursed with uniform growth and higher quality, as well as higher-density shoots. From a comprehensive point of view, the optimum seed rates of Yongyou 12 and Zhongzheyou No.1 were 65 and 50 g/tray, respectively.
基金National Natural Science Foundation of China(30270770)Foundation for Achievement Transfer(02EFN214301156) Key Subject Foundation of Hunan Academy of Agricultural Sciences(03-05).
文摘The physiological mechanism of photosynthetic function and senescence of rice leaves was studied by using early rice variety Baliangyou 100 and late rice variety Weiyou 46, treated with controlled-release nitrogen fertilizer (CRNF), urea and no nitrogen fertilizer. CRNF showed obvious effects on delaying the senescence and prolonging photosynthetic function duration of rice leaves. Compared with urea, CRNF could significantly increase the chlorophyll content of functional leaves in both early and late rice varieties, and this difference between the treatments became larger as rice growth progressed; CRNF increased the activities of active oxygen scavenging enzymes super oxide dismutase (SOD) and peroxidase (POD), and decreased the accumulation amount of malondialdehyde (MDA) in functional leaves during leaf aging; Photosynthetic rate of functional leaves in CRNF treatment was significantly higher than that in urea treatment. The result also indicated that CRNF could effectively regulate the contents of indole-3-acetic acid (IAA) and abscisic acid (ABA) in functional leaves; IAA content was higher and ABA content was lower in CRNF treatment than those in urea treatment. Therefore, application of CRNF could increase the rice yield significantly due to these physiological changes in the functional leaves.
基金Supported by National"Twelfth Five-Year"Plan for Science&Technology Support(2011BAD16B04)Super High-yielding Rice and"555"Talent Leading Program of Jiangxi Province~~
文摘The research selected 16 rice varieties(8 early and 8 late double-cropping rice) by mechanical transplanting modes as per equivalent row and wide-narrow row to explore yield and physiological traits in order to provide references for selection of rice variety suitable for mechanical transplanting. The results showed that yields of early and late rice improved by 2.90% and 2.73% by mechanical transplanting as per equivalent row and wide-narrow row respectively. Besides, leaf area index in the treatment as per wide-narrow row was higher compared with the treatment as per equivalent row, as well as average photosynthetic potential which grew by 0.92%,3.99% and 5.64% of early from tillering-peak stage to mature stage and 3.46%,7.09% and 6.79% of late rice. Furthermore, by mechanical transplanting as per wide-narrow row, SPAD value, and root activity performer higher, as well as the number of differentiated branch and glumous flowers, but degradation rate showed lower. In addition, with mechanical transplanting the same, early rice Zhuliangyou819 and late rice Fengyuanyou 299 took advantages in yield, which can be priorities for mechanical transplanting in double-cropping areas in Jiangxi Province.
文摘To better understand the effect and mechanism of cold tolerant seed-coating agents on the cold tolerance of rice seedlings, the physiological and biochemical effects of four cold tolerant seed-coating agents (HET, YKJ, YKZYJ, and the ABA seed coating agents) on two early indica rice varieties were studied under chilling stress. The results showed that the rice seedlings treated with cold tolerant seed-coating agents under chilling stress maintained dramatically higher root vigor, POD, CAT and SOD activities, and chlorophyll content, had lower MDA content and electrolyte leakage, and accumulated more soluble sugar and free proline, when compared with the control without the treatment, and finally showed lower plant injury rate. It was indicated that the cold tolerant seed coating agent improved the ability of rice seedlings in resisting to chilling stress. YKZYJ was ranked the first in terms of the efficiency in cold tolerance among the four cold tolerant seed-coating agents tested.
基金provided by the National Key Technologies R&D Program of China during the 12th Five-Year Plan period(2016YFD0300505 and 2015BAD01B03)the Public Welfare and Industry,Ministry of Agriculture,China(201403039 and 201303102)the Fundamental Research Funds for the Central Universities,China(KYTZ201402)
文摘This study was conducted to investigate the effects of soilless substrates of hydroponically grown long-mat seedlings (HLMS) on seedling quality and field growth characteristics of transplanted super japonica rice. A widely grown conventional super japonica rice cultivar (Wuyunjing 23) was selected as the test material. The effect of HLMS on seedling quality, mechanical transplantation quality, field growth characteristics, yield, and benefit-cost ratio were compared with seedlings grown in organic substrates and traditional nutritive soil, whJch was selected as the control. Root number, root twJstJng power and root activity of seedlings cultivated by HLMS were decreased compared to that of the organic substrates andcontrol. However, seedling root length as well as aboveground growth were increased compared to the organic substrates and control seed- lings. In the HLMS, the content of gibberellin acid (GA3) decreased while abscisic acid (ABA) content increased compared to that of the organic substrates and control seedlings. During the early stages after transplanting, the re-greening of HLMS was delayed compared to that of the organic substrates and control seedlings. Nevertheless, there were no significant differences in tiller dynamics and crop yield among the HLMS, organic substrates and control treatments. The effects of HLMS on seedling production were similar to those of the organic substrates and traditional nutritive soil in the present study, suggesting that HLMS have the potential to replace traditional nutritive soil in seedling production without decreasing crop yield. Finally, it is important to reduce organic substrates and topsoil dependence during rice seedling production and worthwhile to consider HLMS popularization and its application on a larger scale.
基金This study was supported by the National Natural Science Foundation of China (30671225)the Natural Science Foundation of Jiangsu Province, China (BK2006069, BK2007071)the National Key Technologies R&D Program, China (2006BAD02A13-3-2).
文摘This study was designed to elucidate the grain filling characteristics and the causes of poor grain plumpness of some two-line hybrid rice combinations and their hormonal mechanism. Six varieties, including three two-line hybrid rice combinations, that show differences in seed-setting and grain filling, were used. And the contents of starch, sucrose, zeatin (Z) + zeatin riboside (ZR), indole-3-acetic acid (IAA), and abscisic acid (ABA), the ethylene evolution rate, activities of sucrose synthase (SuSase) and starch synthase (StSase) in grains, the seed-setting and grain filling rate were investigated. The correlations amongst these were analyzed. The results showed that the poor grain filling of two-line hybrids was mainly attributed to the higher unfilled grain rate and the lower filling degree of inferior grains. During the early and mid grain filling periods, the sucrose content in inferior grains was greater than that in superior grains for the combinations with poor grain filling, indicating that the substrate concentration was not the principal factor for their slow grain filling and poor grain plumpness of the inferior grains of two-line hybrids. Z + ZR, IAA, and ABA in superior grains were obviously greater than those in inferior grains at early grain filling stage. The maximum and mean contents of Z + ZR, IAA, and ABA were positively very significantly correlated with the maximum and mean grain-filling rate, filling degree, and grain weight. The evolution rate of ethylene was greater in inferior grains than in superior grains and greater for the combinations with poor grain plumpness than those with good grain plumpness at the early or mid filling stages. The evolution rate of ethylene was negatively and significantly correlated with the grain filling rate, the grain filling degree, and the grain weight. Spraying ethephon (ethylene-releasing agent) at the early grain filling stage increased the evolution rate of ethylene, reduced the ABA content and activities of SuSase and StSase, and decreased the grain filling degree and the grain weight. The results were reversed when cobatous nitrate (an inhibitor of ethylene synthesis) was applied. The results suggested that the hormones and their balance play a role in the regulation of grain filling and enzymatic activities, and the poor grain filling is attributed to the low contents of Z + ZR, IAA, and ABA, and the high evolution rate of ethylene in the inferior grains of some two-line hybrid rice combinations. The results suggested that hormones play important roles in the grain filling of some two-line hybrid rice combinations, and their filling degree can be improved by regulating the hormonal contents.
基金supported by the National Natural Science Foundation of China(30270811).
文摘Amylose content is a key determinant of eating quality of rice. With the characteristics offluffy texture, glossy appearance when cooked, remaining soft when cooled and excellentpuffing ability, the low-amylose rice with amylose content 5-15% could be served as not onlycooked rice directly, but also good material for convenience, mixed rice and puffing foods.Current status on characterization, inheritance, molecular mechanism and breeding of low-amylose content rice was reviewed in this paper, strategy of related researches in the era ofglymics was mainly discussed furthermore. The future research should focus on screening andenhancing the germplasm, further elucidating the molecular mechanism on mutation of lowamylose content, utilizing the genes independent of Wx on low-amylose content rice breedingprogram, and developing high quality functional rice cultivars for special usage throughpyramiding low amylose gene and other special quality genes.
文摘Leaf rolling(LR)is one of the defensive mechanisms that plants have developed against adverse environmental conditions.LR is a typical drought response,promoting drought resistance in various gramineae species,including wheat,maize,and rice.Rice cultivation faces the formidable challenge of water deprivation because of its high water requirements,which leads to drought-related symptoms in rice.LR is an important morphological characteristic that plays a key role in controlling water loss during water insufficiency,thereby regulating leaf area and stature,which are crucial agronomic traits determining yield criteria.Bulliform,sclerenchyma,mesophyll,and vascular bundles are the cells that engage in LR and commonly exhibit adaxial or abaxial types of rolling in rice.The specific genes linked to rolling,either adaxially or abaxially,are discussed here.In addition to the factors influencing LR,here is a short review of the morphological,physiological and molecular responses of this adaptation under drought stress.Moreover,this review highlights how LR combats the consequences of drought stress.The eco-physiological and molecular mechanisms underlying this morphological adaptation in rice should be further explored,as they might be useful in dealing with various degrees of drought tolerance.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.32100257,32172078,31871599 and 31901528)Hunan Science and Technology Innovation Program,China(Grant Nos.2021NK1001,2021NK1003 and 2021NK1011)+1 种基金Key Research and Development,Projects in Hunan Province,China(Grant No.2020NK2054)the Open Programs of the State Key Laboratory of Hybrid Rice,Changsha,China(Grant No.2020KF03)。
文摘The main goals of rice breeding nowadays include increasing yield,improving grain quality,and promoting complete mechanized production to save labor costs.Rice grain shape,specified by three dimensions,including grain length,width and thickness,has a more precise meaning than grain size,contributing to grain appearance quality as well as grain weight and thus yield.Furthermore,the divergence of grain shape characters could be utilized in mechanical seed sorting in hybrid rice breeding systems,which has been succeeded in utilizing heterosis to achieve substantial increase in rice yield in the past decades.Several signaling pathways that regulate rice grain shape have been elucidated,including G protein signaling,ubiquitination-related pathway,mitogen-activated protein kinase signaling,phytohormone biosynthesis and signaling,micro RNA process,and some other transcriptional regulatory pathways and regulators.This review summarized the recent progress on molecular mechanisms underlying rice grain shape determination and the potential of major genes in future breeding applications.
基金Supported by Key Laboratory of Pesticide Harmless Application of Hunan ProvinceScience and Technology Plan Project of Loudi City(201601)
文摘Optimized high-yielding cultivation is of great significance to ensure stable and high yield of rice in China. This paper reviewed several super high-yielding cultivation modes, analyzed the effects of different cultivation modes on rice agronomic traits and physiological characteristics, and discussed the advances in rice mechanized cultivation and mode. Finally, the future development prospects of rice cultivation were put forward.