Rice-wheat is the predominant cropping system of fertile soils of Indian, Pakistan, Bangladesh and Nepal falling in the alluvial Indo-Gangetic Plains (IGP). Management of rice residues produced after the harvest of ri...Rice-wheat is the predominant cropping system of fertile soils of Indian, Pakistan, Bangladesh and Nepal falling in the alluvial Indo-Gangetic Plains (IGP). Management of rice residues produced after the harvest of rice crop and before sowing of the next wheat crop is a big challenge in that area. Mostly farmers burn rice residues assuming it low profile fodder and of little use. Burning of rice residues deprives the fields from many plant nutrients as they are lost during burning along with environmental pollutions and other issues. A field study was conducted for two consecutive years at the experimental area of the Department of Agronomy, Punjab Agricultural University, Ludhiana (India) to assess the impact of different rice residue management techniques and weed control treatments in wheat on soil available plant nutrients in rice-wheat cropping system. The experiment was laid out in split plot design with three replications. In main plots, five rice residue management treatments viz., no rice residue, rice residue 5 t·ha-1 (surface), rice residue 6 t·ha-1 (surface), rice residue 7 t·ha-1 (surface) and rice residue 5 t·ha-1 (incorporation) were settled and in sub plots, four weed control treatments i.e. clodinafop 60 t·ha-1, sulfosulfuron 25 t·ha-1, mesosulfuron + iodosulfuron 12 t·ha-1 and control (unweeded) were arranged. Results of the study revealed that surface application as well as incorporation of rice residues improved the organic carbon and NPK status than no rice residues. Among the residue management practices, incorporation of rice residues 5 t·ha-1 significantly improved the soil organic carbon, available nitrogen, phosphorus and potassium than no rice residue treatment in the 0 - 15 soil layer during both the years. Same trend was observed for 15 - 30 cm soil layer but differences were less wide than 0 - 15 cm soil layer. Among the weed control treatments, organic carbon was not significantly influenced. Herbicide treated plots registered significantly higher available nitrogen, phosphorus and potassium than control (unweeded) treatment in the 0 - 15 cm soil layer during both the years.展开更多
Studies were carried out for two years to evaluate the effect of methods of sowing and weed control practices on the productivity of transplanted and direct wet-seeded rice in Dera Ismail Khan, NWFP, Pakistan. The exp...Studies were carried out for two years to evaluate the effect of methods of sowing and weed control practices on the productivity of transplanted and direct wet-seeded rice in Dera Ismail Khan, NWFP, Pakistan. The experiment was laid out in a randomized complete block design with a split plot arrangement. The planting techniques viz. transplanting and direct seeding were maintained in main plots while weed control practices included the use of granular herbicide Sunstar 15WG (ethoxy sulfuron), Machete 60EC (butachlor), conventional hand weeding, and the weedy check (control) were assigned to the sub-plots. Data were recorded on weed parameters like weed density and dry weed biomass 60 and 90 days after sowing (DAS); agronomic parameters including plant population, number of panicles and paddy yield and physiological parameters like leaf area index and net assimilation rate 45 and 90 DAS. The planting methods and weed management significantly influenced most of the parameters studied. The data revealed that the paddy yield and its components were significantly higher in the transplanted method than that in direct-seeded method, while the weed density and biomass were lower in the transplanted plots than the direct-seeded plots. Among weed management tools, the maximum paddy yield was obtained in hand weeding, closely followed by herbicide application Machete 60EC during both cropping seasons.展开更多
Aerobic rice or dry direct seeded rice is highly vulnerable to weeds because of lack of “head start” over weeds and standing water layer to suppress weeds. The risks of chemical control and the huge cost involvement...Aerobic rice or dry direct seeded rice is highly vulnerable to weeds because of lack of “head start” over weeds and standing water layer to suppress weeds. The risks of chemical control and the huge cost involvement in mechanical control demand an eco-friendly and cost-effective integrated weed management. Weed competitive rice cultivar may be considered as a viable tool for integrated weed management. In these circumstances, an experiment was designed to evaluate weed competitiveness of some selected winter rice varieties under aerobic soil conditions. The study was conducted during dry season (February to June) 2016 at the Agronomy Field Laboratory and Weed Management Laboratory, Bangladesh Agricultural University, Mymensingh. Fourteen rice varieties namely, BRRI dhan28, BRRI dhan29, BRRI dhan47, BRRI dhan50, BRRI dhan55, BRRI dhan58, BRRI dhan59, BRRI dhan67, Binadhan-5, Binadhan-6, Binadhan-8, Binadhan-10, BRRI hybrid dhan3 and Agrodhan-14 were grown under weedy and weed-free conditions. Plots with no rice were also maintained to observe the natural growth of weed in absence of rice. The experiment was conducted with split-plot design with three replications. Weeding regime was allocated in main plot and rice variety was allocated in sub-plot. Results showed that rice varieties varied widely in their yield performances and weed competitiveness. Among rice varieties, BRRI dhan59 allowed the minimum weed growth (19.2 g m-2) while Binadhan-5 allowed the maximum weed growth (62.8 g m-2). Grain yield ranged from 1.85 t ha-1 (BRRI dhan55) to 3.92 t ha-1 (Binadhan-5) under weed-free condition and between 0.41 t ha-1 (BRRI dhan55) and 2.06 t ha-1 (BRRI dhan59) under weedy condition. Weed inflicted relative yield loss ranged from 43.4% to 82.1% among the varieties. BRRI dhan59 allowed the least yield penalty (43.4%) while Binadhan-5 had the maximum yield penalty (82.1%) due to weed competition. Although Binadhan-5 is the most productive variety (3.92 t ha-1) for aerobic culture but its weed inflicted relative yield loss is higher (82.1%) than many other varieties with low yield potential. On the other hand, BRRI dhan59 appeared as the most weed competitive variety (only 43.4% relative yield loss) with productivity of 3.84 t ha-1. Therefore, weed competitive variety should be considered as a vital tool while designing integrated weed management system for aerobic rice.展开更多
Chemical weeding in dry direct seeding fields of single cropping middle-late rice was studied in Huida vegetable farm of Huizhou City in 2012. The main treatment was herbicide( pretilachlor + bensulfuron-methyl,Yang...Chemical weeding in dry direct seeding fields of single cropping middle-late rice was studied in Huida vegetable farm of Huizhou City in 2012. The main treatment was herbicide( pretilachlor + bensulfuron-methyl,Yangguo and butachlor),and the sub-treatment was application method( soil treatments,seedling treatment and integrated treatment). The results showed that 80 g pretilachlor + bensulfuron-methyl( 36% pretilachlor + 4% bensulfuron-methyl) diluted with 50 kg water could be sprayed or 200 g Yangguo( 23. 9% butachlor + 1. 1% bensulfuron-methyl) mixed with 15 kg sandy soil could be broadcasted per 667 m2 on the sowing day or the second day under moist condition of soil,which could effectively control weeds in dry direct seeding fields of single cropping middle-late rice.展开更多
Weedy rice exerts a severe impact on rice production by competing for sunlight, water and nutrients. This study assayed the population structure, genetic diversity and origin of Northeast Asia weedy rice by using 48 s...Weedy rice exerts a severe impact on rice production by competing for sunlight, water and nutrients. This study assayed the population structure, genetic diversity and origin of Northeast Asia weedy rice by using 48 simple sequence repeat markers. The results showed that weedy rice in Northeast Asia had a high genetic diversity, with Shannon's diversity index (I) of 0.748 and the heterozygosity (He) of 0.434. In each regional population, I value varied widely. The widest range of I (0.228-0.489) was observed in the weedy rice of Eastern China, which was larger than that of Northeast China and Korea (0.168-0.270). The F-statistics of regional populations (Fis, Fit and Fst) also showed higher values in the weedy rice of Eastern China than those of Northeast China and Korea All weedy rice accessions were grouped into two clusters in the unweighted pair group method with arithmetic mean cluster analysis dendrogram, namely Eastern China branch and Northeastern China plus Korea branch. There was significant differentiation in genetic characteristics in weedy rice of northeastern and eastern Asia, especially in Eastern China.展开更多
Two allelopathic rice accessions, PI312777 and Allelopathy1, significantly suppressedthe growth of associated weeds in the field. Moreover, their weed-suppressing effectswere correlated with the cultivation patterns. ...Two allelopathic rice accessions, PI312777 and Allelopathy1, significantly suppressedthe growth of associated weeds in the field. Moreover, their weed-suppressing effectswere correlated with the cultivation patterns. The weed-suppressing effects of throwingand transplanting were more effective than that of direct seeding. Furthermore, theamounts of allelochemicals (resorcinols, flavones and hydroxamic acids) produced andreleased from two allelopathic rice accessions were much higher than that from a non-allelopathic rice variety Hua-Jing-Xian1, and reached the maximum concentration at the6th leaf stage. Differences in the weed-suppressing effects of rice accessions appear toresult from the accessions producing and releasing different amounts of allelochemicalsin the field. Further research confirmed that in PI312777 plants, allelochemicals weresynthesized by the above-ground parts, and then secreted through the root tissues. Roottissues of PI312777 plants never produced the allelochemicals. Root exudates fromPI312777 could significantly inhibit the growth of E. crus-galli surrounding rice plantsin water culture. However, when activated carbon was added to the culture solution, whichcould absorb allelochemicals from root exudates, the growth of E. crus-galli was nolonger significantly inhibited. Weed-suppressing effects of rice accessions depended onallelopathy, cultivation patterns and other factors in rice fields, while allelopathywas one of important factors. Interestingly, the amounts of allelochemicals produced andreleased from allelopathic rice plants may be induced by the presence of E. crus-galli.This suggests that there is a possible chemical recognition between rice and E. crus-galli.展开更多
[Objective] The aim was to explore the prevention effects of pyrazosul-furon-ethyl·quinclorac 50% WP on stem and leaf of dry direct seeded rice. [Method] Totaling 7 drug doses were set in the test and the effect...[Objective] The aim was to explore the prevention effects of pyrazosul-furon-ethyl·quinclorac 50% WP on stem and leaf of dry direct seeded rice. [Method] Totaling 7 drug doses were set in the test and the effects were observed 5, 10, 15 and 30 d after drug application, with the remained weeds surveyed 15 and 30 d after drug application. [Result] The test showed pyrazosulfuron-ethyl·quinclorac 50%WP was safe to rice as treatment agent of stem and leaf, and rice yield increased dramatical y, with the growth rate in 2.1%-49.3%. After the drug application, the prevention effects on Echinochloa crusgal i, Ludwimlia prostrata, Monochoria vamli-nalis, and Zong grass were 92.2%, 96.6%, 93.5%, and 94.8%, and the effects on fresh weight were 94.8%, 97.1%, 93.3% and 94.9%, respectively. [Conclusion] Pyra-zosulfuron-ethyl·quinclorac 50% WP can be taken as treatment agents of stem and leaf of dry direct seeded rice.展开更多
Rice fields are ecosystems with many types of plants, microbes, invertebrates, birds and animals. The rice farming protects the biodiversity of the region and maintains the ecosystem for the benefit of environment. So...Rice fields are ecosystems with many types of plants, microbes, invertebrates, birds and animals. The rice farming protects the biodiversity of the region and maintains the ecosystem for the benefit of environment. Some rice varieties release biocidal allelochemicals which might affect major weeds, microbial and pathogenic diversity around rice plants, even soil characteristics. A large number of compounds such as phenolic acids, fatty acids, indoles and terpenes have been identified in rice root exudates and decomposing rice residues, as putative allelochemicals which can interact with surrounding environment. Since these allelopathic interactions may be positive, they can be used as effective contributor for sustainable and eco-friendly agro-production system. Genetic modification of crop plants to improve their allelopathic properties and enhancement of desirable traits has been suggested. Development of crops with enhanced allelopathic traits by genetic modification should be done cautiously, keeping in view of the ecological risk assessment(non-toxic and safe for humans and ecosystem, crop productivity, ratio of benefit and cost, etc.).展开更多
In water deficit area, judicious use of water is essential for increasing area under crop production with limited water supply. Film Mulching has been advocated as an effective means for conserving soil moisture in ri...In water deficit area, judicious use of water is essential for increasing area under crop production with limited water supply. Film Mulching has been advocated as an effective means for conserving soil moisture in rice production. The effects of high density polyethylene (HDPE) film on increasing rice production, controlling weeds and residue amount of plastic were studied under five treatments, including 5, 10, 15 and 20 μm thickness as well as bare cultivation (CK). The results indicated that the HDPE film mulching mode had significant effects on weed control, soil temperature, soil moisture, photosynthetic rate, seedling biomass, yield and residues of plastic film. Combined with economic effect, it showed that the HDPE film of 10 μm is the best option for rice production.展开更多
A field experiment was conducted during Kharif, 2011-2012 and 2012-2013 at GKVK, Bengaluru, Karnataka to study the effect of integrated package of agrotechniques on growth and yield of aerobic rice. The predominant we...A field experiment was conducted during Kharif, 2011-2012 and 2012-2013 at GKVK, Bengaluru, Karnataka to study the effect of integrated package of agrotechniques on growth and yield of aerobic rice. The predominant weed flora observed in the experimental field were, Eleusine indica, Digitaria marginata L., Dactyloctenium aegyptium L., Alternanthera sessilis, Mollugo distica L., Celosia argentia and Borreria hispida. Treatments receiving integrated weed management practices recorded significantly lower weed population and weed dry weight as compared to pre-emergence application of pyrazosulfuron ethyl alone. Application of RDF + FYM + Biofertilizers + FeSO4 +IWM practices (T8) recorded significantly higher growth, yield parameters and yield as compared to RDF + FYM + IWM practices and was being on par with RDF + FYM + Biofertilizers + IWM practices (T5).展开更多
Rice leaffolder, Cnaphalocrocis medinalis, is one of the major foliage feeders found in the rice growing regions in India. When the crop was at maturity, numerous adults of rice leaffolder were found in the rice field...Rice leaffolder, Cnaphalocrocis medinalis, is one of the major foliage feeders found in the rice growing regions in India. When the crop was at maturity, numerous adults of rice leaffolder were found in the rice fields though the larval population gradually decreased, and no eggs were found on rice leaves. The population characteristics of C. medinalis were assessed based on the physiological age status of adults at different crop growth stages. Based on egg development within ovarioles, ovariole appearance number and colour of fat bodies, and characteristics of bursa copulatrix, physiological age status of the adults was described, which served as a basis for the determination of age composition. C. medinalis adults were found during the first week of August on rice plants, of which 44% were in Age 0 with immature ovaries, indicating immigrants. However, 28% adults each were at Ages 1-2 with developing ovaries, indicating local breeding population. The carryover and off-season survival of C. medinalis were also studied to determine the contribution of the alternative hosts in the population growth that helped in devising efficient management strategies. Rice was the most preferred host followed by Triticum aestivum, Echinochloa crusgulli and Brachiaria plantaginea. Various routes of the carryover of C. medinalis from season to season were discussed.展开更多
为解决光线遮蔽、藻萍干扰以及稻叶尖形状相似等复杂环境导致稻田杂草识别效果不理想问题,该研究提出一种基于组合深度学习的杂草识别方法。引入MSRCP(multi-scale retinex with color preservation)对图像进行增强,以提高图像亮度及对...为解决光线遮蔽、藻萍干扰以及稻叶尖形状相似等复杂环境导致稻田杂草识别效果不理想问题,该研究提出一种基于组合深度学习的杂草识别方法。引入MSRCP(multi-scale retinex with color preservation)对图像进行增强,以提高图像亮度及对比度;加入ViT分类网络去除干扰背景,以提高模型在复杂环境下对小目标杂草的识别性能。在YOLOv7模型中主干特征提取网络替换为GhostNet网络,并引入CA注意力机制,以增强主干特征提取网络对杂草特征提取能力及简化模型参数计算量。消融试验表明:改进后的YOLOv7模型平均精度均值为88.2%,较原YOLOv7模型提高了3.3个百分点,参数量减少10.43 M,计算量减少66.54×109次/s。识别前先经过MSRCP图像增强后,与原模型相比,改进YOLOv7模型的平均精度均值提高了2.6个百分点,光线遮蔽、藻萍干扰以及稻叶尖形状相似的复杂环境下平均精度均值分别提高5.3、3.6、3.1个百分点,加入ViT分类网络后,较原模型平均精度均值整体提升了4.4个百分点,光线遮蔽、藻萍干扰一级稻叶尖形状相似的复杂环境下的平均精度均值较原模型整体提升了6.2、6.1、5.7个百分点。ViT-改进YOLOv7模型的平均精度均值为92.6%,相比于YOLOv5s、YOLOXs、MobilenetV3-YOLOv7、YOLOv8和改进YOLOv7分别提高了11.6、10.1、5.0、4.2、4.4个百分点。研究结果可为稻田复杂环境的杂草精准识别提供支撑。展开更多
To study the production technology of rice seeds,with Lianjing 7 as test material,this paper explores the effects of the key rice seed production,processing and storage technologies( such as nitrogen fertilizer applic...To study the production technology of rice seeds,with Lianjing 7 as test material,this paper explores the effects of the key rice seed production,processing and storage technologies( such as nitrogen fertilizer application and management,weeding mode in seed breeding field,temperature control of mechanical drying and water control on seed storage) on the quality of rice seeds. The results show that the optimal application proportion of tillering stage dressing and earing fertilizer is 8: 2,followed by 7 : 3; the best time of weeding is booting stage,with the highest purity; the effect of drying and germination rate is best when the temperature is controlled at 44℃ in mechanical drying process; the seed storage quality and storage costs can be guaranteed when the water content of rice seed is controlled at 18%.展开更多
文摘Rice-wheat is the predominant cropping system of fertile soils of Indian, Pakistan, Bangladesh and Nepal falling in the alluvial Indo-Gangetic Plains (IGP). Management of rice residues produced after the harvest of rice crop and before sowing of the next wheat crop is a big challenge in that area. Mostly farmers burn rice residues assuming it low profile fodder and of little use. Burning of rice residues deprives the fields from many plant nutrients as they are lost during burning along with environmental pollutions and other issues. A field study was conducted for two consecutive years at the experimental area of the Department of Agronomy, Punjab Agricultural University, Ludhiana (India) to assess the impact of different rice residue management techniques and weed control treatments in wheat on soil available plant nutrients in rice-wheat cropping system. The experiment was laid out in split plot design with three replications. In main plots, five rice residue management treatments viz., no rice residue, rice residue 5 t·ha-1 (surface), rice residue 6 t·ha-1 (surface), rice residue 7 t·ha-1 (surface) and rice residue 5 t·ha-1 (incorporation) were settled and in sub plots, four weed control treatments i.e. clodinafop 60 t·ha-1, sulfosulfuron 25 t·ha-1, mesosulfuron + iodosulfuron 12 t·ha-1 and control (unweeded) were arranged. Results of the study revealed that surface application as well as incorporation of rice residues improved the organic carbon and NPK status than no rice residues. Among the residue management practices, incorporation of rice residues 5 t·ha-1 significantly improved the soil organic carbon, available nitrogen, phosphorus and potassium than no rice residue treatment in the 0 - 15 soil layer during both the years. Same trend was observed for 15 - 30 cm soil layer but differences were less wide than 0 - 15 cm soil layer. Among the weed control treatments, organic carbon was not significantly influenced. Herbicide treated plots registered significantly higher available nitrogen, phosphorus and potassium than control (unweeded) treatment in the 0 - 15 cm soil layer during both the years.
文摘Studies were carried out for two years to evaluate the effect of methods of sowing and weed control practices on the productivity of transplanted and direct wet-seeded rice in Dera Ismail Khan, NWFP, Pakistan. The experiment was laid out in a randomized complete block design with a split plot arrangement. The planting techniques viz. transplanting and direct seeding were maintained in main plots while weed control practices included the use of granular herbicide Sunstar 15WG (ethoxy sulfuron), Machete 60EC (butachlor), conventional hand weeding, and the weedy check (control) were assigned to the sub-plots. Data were recorded on weed parameters like weed density and dry weed biomass 60 and 90 days after sowing (DAS); agronomic parameters including plant population, number of panicles and paddy yield and physiological parameters like leaf area index and net assimilation rate 45 and 90 DAS. The planting methods and weed management significantly influenced most of the parameters studied. The data revealed that the paddy yield and its components were significantly higher in the transplanted method than that in direct-seeded method, while the weed density and biomass were lower in the transplanted plots than the direct-seeded plots. Among weed management tools, the maximum paddy yield was obtained in hand weeding, closely followed by herbicide application Machete 60EC during both cropping seasons.
文摘Aerobic rice or dry direct seeded rice is highly vulnerable to weeds because of lack of “head start” over weeds and standing water layer to suppress weeds. The risks of chemical control and the huge cost involvement in mechanical control demand an eco-friendly and cost-effective integrated weed management. Weed competitive rice cultivar may be considered as a viable tool for integrated weed management. In these circumstances, an experiment was designed to evaluate weed competitiveness of some selected winter rice varieties under aerobic soil conditions. The study was conducted during dry season (February to June) 2016 at the Agronomy Field Laboratory and Weed Management Laboratory, Bangladesh Agricultural University, Mymensingh. Fourteen rice varieties namely, BRRI dhan28, BRRI dhan29, BRRI dhan47, BRRI dhan50, BRRI dhan55, BRRI dhan58, BRRI dhan59, BRRI dhan67, Binadhan-5, Binadhan-6, Binadhan-8, Binadhan-10, BRRI hybrid dhan3 and Agrodhan-14 were grown under weedy and weed-free conditions. Plots with no rice were also maintained to observe the natural growth of weed in absence of rice. The experiment was conducted with split-plot design with three replications. Weeding regime was allocated in main plot and rice variety was allocated in sub-plot. Results showed that rice varieties varied widely in their yield performances and weed competitiveness. Among rice varieties, BRRI dhan59 allowed the minimum weed growth (19.2 g m-2) while Binadhan-5 allowed the maximum weed growth (62.8 g m-2). Grain yield ranged from 1.85 t ha-1 (BRRI dhan55) to 3.92 t ha-1 (Binadhan-5) under weed-free condition and between 0.41 t ha-1 (BRRI dhan55) and 2.06 t ha-1 (BRRI dhan59) under weedy condition. Weed inflicted relative yield loss ranged from 43.4% to 82.1% among the varieties. BRRI dhan59 allowed the least yield penalty (43.4%) while Binadhan-5 had the maximum yield penalty (82.1%) due to weed competition. Although Binadhan-5 is the most productive variety (3.92 t ha-1) for aerobic culture but its weed inflicted relative yield loss is higher (82.1%) than many other varieties with low yield potential. On the other hand, BRRI dhan59 appeared as the most weed competitive variety (only 43.4% relative yield loss) with productivity of 3.84 t ha-1. Therefore, weed competitive variety should be considered as a vital tool while designing integrated weed management system for aerobic rice.
基金Supported by National Science and Technology Support Program(2007BAD89B14)Special Fund for Agro-scientific Research in the PublicInterest(00803028)+3 种基金Major Technical Research Project of Ministry of Agriculture for Agricultural Structure Adjustment(06-03-07B)Project ofGuangdong Provincial Finance Department(YCY[2005]No.11,YCJ[2006]No.187)Agricultural Research Project of Guangdong ProvincialScience and Technology Department(2005B20101001)Special Fund forAgro-scientific Research in the Public Interest(201103001)
文摘Chemical weeding in dry direct seeding fields of single cropping middle-late rice was studied in Huida vegetable farm of Huizhou City in 2012. The main treatment was herbicide( pretilachlor + bensulfuron-methyl,Yangguo and butachlor),and the sub-treatment was application method( soil treatments,seedling treatment and integrated treatment). The results showed that 80 g pretilachlor + bensulfuron-methyl( 36% pretilachlor + 4% bensulfuron-methyl) diluted with 50 kg water could be sprayed or 200 g Yangguo( 23. 9% butachlor + 1. 1% bensulfuron-methyl) mixed with 15 kg sandy soil could be broadcasted per 667 m2 on the sowing day or the second day under moist condition of soil,which could effectively control weeds in dry direct seeding fields of single cropping middle-late rice.
基金funded by Shanghai Municipal Key Task Projects of Prospering Agriculture by Science and Technology Plan in China (Grant No. Hu Nong Ke Gong Zi 2008: 2-1)
文摘Weedy rice exerts a severe impact on rice production by competing for sunlight, water and nutrients. This study assayed the population structure, genetic diversity and origin of Northeast Asia weedy rice by using 48 simple sequence repeat markers. The results showed that weedy rice in Northeast Asia had a high genetic diversity, with Shannon's diversity index (I) of 0.748 and the heterozygosity (He) of 0.434. In each regional population, I value varied widely. The widest range of I (0.228-0.489) was observed in the weedy rice of Eastern China, which was larger than that of Northeast China and Korea (0.168-0.270). The F-statistics of regional populations (Fis, Fit and Fst) also showed higher values in the weedy rice of Eastern China than those of Northeast China and Korea All weedy rice accessions were grouped into two clusters in the unweighted pair group method with arithmetic mean cluster analysis dendrogram, namely Eastern China branch and Northeastern China plus Korea branch. There was significant differentiation in genetic characteristics in weedy rice of northeastern and eastern Asia, especially in Eastern China.
基金supported by the National Natural Science Foundation of China(30070130)the Natural Science Foundation of Guangdong Province,China(021045)+1 种基金National Key Technologies R&D Program in the Tenth Five-Year of China(2001BA509B07)the Scientific Fund for Scholars Returning Overseas of Ministry of Education,China(2001-498).
文摘Two allelopathic rice accessions, PI312777 and Allelopathy1, significantly suppressedthe growth of associated weeds in the field. Moreover, their weed-suppressing effectswere correlated with the cultivation patterns. The weed-suppressing effects of throwingand transplanting were more effective than that of direct seeding. Furthermore, theamounts of allelochemicals (resorcinols, flavones and hydroxamic acids) produced andreleased from two allelopathic rice accessions were much higher than that from a non-allelopathic rice variety Hua-Jing-Xian1, and reached the maximum concentration at the6th leaf stage. Differences in the weed-suppressing effects of rice accessions appear toresult from the accessions producing and releasing different amounts of allelochemicalsin the field. Further research confirmed that in PI312777 plants, allelochemicals weresynthesized by the above-ground parts, and then secreted through the root tissues. Roottissues of PI312777 plants never produced the allelochemicals. Root exudates fromPI312777 could significantly inhibit the growth of E. crus-galli surrounding rice plantsin water culture. However, when activated carbon was added to the culture solution, whichcould absorb allelochemicals from root exudates, the growth of E. crus-galli was nolonger significantly inhibited. Weed-suppressing effects of rice accessions depended onallelopathy, cultivation patterns and other factors in rice fields, while allelopathywas one of important factors. Interestingly, the amounts of allelochemicals produced andreleased from allelopathic rice plants may be induced by the presence of E. crus-galli.This suggests that there is a possible chemical recognition between rice and E. crus-galli.
文摘[Objective] The aim was to explore the prevention effects of pyrazosul-furon-ethyl·quinclorac 50% WP on stem and leaf of dry direct seeded rice. [Method] Totaling 7 drug doses were set in the test and the effects were observed 5, 10, 15 and 30 d after drug application, with the remained weeds surveyed 15 and 30 d after drug application. [Result] The test showed pyrazosulfuron-ethyl·quinclorac 50%WP was safe to rice as treatment agent of stem and leaf, and rice yield increased dramatical y, with the growth rate in 2.1%-49.3%. After the drug application, the prevention effects on Echinochloa crusgal i, Ludwimlia prostrata, Monochoria vamli-nalis, and Zong grass were 92.2%, 96.6%, 93.5%, and 94.8%, and the effects on fresh weight were 94.8%, 97.1%, 93.3% and 94.9%, respectively. [Conclusion] Pyra-zosulfuron-ethyl·quinclorac 50% WP can be taken as treatment agents of stem and leaf of dry direct seeded rice.
文摘Rice fields are ecosystems with many types of plants, microbes, invertebrates, birds and animals. The rice farming protects the biodiversity of the region and maintains the ecosystem for the benefit of environment. Some rice varieties release biocidal allelochemicals which might affect major weeds, microbial and pathogenic diversity around rice plants, even soil characteristics. A large number of compounds such as phenolic acids, fatty acids, indoles and terpenes have been identified in rice root exudates and decomposing rice residues, as putative allelochemicals which can interact with surrounding environment. Since these allelopathic interactions may be positive, they can be used as effective contributor for sustainable and eco-friendly agro-production system. Genetic modification of crop plants to improve their allelopathic properties and enhancement of desirable traits has been suggested. Development of crops with enhanced allelopathic traits by genetic modification should be done cautiously, keeping in view of the ecological risk assessment(non-toxic and safe for humans and ecosystem, crop productivity, ratio of benefit and cost, etc.).
文摘In water deficit area, judicious use of water is essential for increasing area under crop production with limited water supply. Film Mulching has been advocated as an effective means for conserving soil moisture in rice production. The effects of high density polyethylene (HDPE) film on increasing rice production, controlling weeds and residue amount of plastic were studied under five treatments, including 5, 10, 15 and 20 μm thickness as well as bare cultivation (CK). The results indicated that the HDPE film mulching mode had significant effects on weed control, soil temperature, soil moisture, photosynthetic rate, seedling biomass, yield and residues of plastic film. Combined with economic effect, it showed that the HDPE film of 10 μm is the best option for rice production.
文摘A field experiment was conducted during Kharif, 2011-2012 and 2012-2013 at GKVK, Bengaluru, Karnataka to study the effect of integrated package of agrotechniques on growth and yield of aerobic rice. The predominant weed flora observed in the experimental field were, Eleusine indica, Digitaria marginata L., Dactyloctenium aegyptium L., Alternanthera sessilis, Mollugo distica L., Celosia argentia and Borreria hispida. Treatments receiving integrated weed management practices recorded significantly lower weed population and weed dry weight as compared to pre-emergence application of pyrazosulfuron ethyl alone. Application of RDF + FYM + Biofertilizers + FeSO4 +IWM practices (T8) recorded significantly higher growth, yield parameters and yield as compared to RDF + FYM + IWM practices and was being on par with RDF + FYM + Biofertilizers + IWM practices (T5).
基金supported by Indian Council of Agricultural Research, National Agricultural Innovative Project (Grant No.C2046)
文摘Rice leaffolder, Cnaphalocrocis medinalis, is one of the major foliage feeders found in the rice growing regions in India. When the crop was at maturity, numerous adults of rice leaffolder were found in the rice fields though the larval population gradually decreased, and no eggs were found on rice leaves. The population characteristics of C. medinalis were assessed based on the physiological age status of adults at different crop growth stages. Based on egg development within ovarioles, ovariole appearance number and colour of fat bodies, and characteristics of bursa copulatrix, physiological age status of the adults was described, which served as a basis for the determination of age composition. C. medinalis adults were found during the first week of August on rice plants, of which 44% were in Age 0 with immature ovaries, indicating immigrants. However, 28% adults each were at Ages 1-2 with developing ovaries, indicating local breeding population. The carryover and off-season survival of C. medinalis were also studied to determine the contribution of the alternative hosts in the population growth that helped in devising efficient management strategies. Rice was the most preferred host followed by Triticum aestivum, Echinochloa crusgulli and Brachiaria plantaginea. Various routes of the carryover of C. medinalis from season to season were discussed.
文摘为解决光线遮蔽、藻萍干扰以及稻叶尖形状相似等复杂环境导致稻田杂草识别效果不理想问题,该研究提出一种基于组合深度学习的杂草识别方法。引入MSRCP(multi-scale retinex with color preservation)对图像进行增强,以提高图像亮度及对比度;加入ViT分类网络去除干扰背景,以提高模型在复杂环境下对小目标杂草的识别性能。在YOLOv7模型中主干特征提取网络替换为GhostNet网络,并引入CA注意力机制,以增强主干特征提取网络对杂草特征提取能力及简化模型参数计算量。消融试验表明:改进后的YOLOv7模型平均精度均值为88.2%,较原YOLOv7模型提高了3.3个百分点,参数量减少10.43 M,计算量减少66.54×109次/s。识别前先经过MSRCP图像增强后,与原模型相比,改进YOLOv7模型的平均精度均值提高了2.6个百分点,光线遮蔽、藻萍干扰以及稻叶尖形状相似的复杂环境下平均精度均值分别提高5.3、3.6、3.1个百分点,加入ViT分类网络后,较原模型平均精度均值整体提升了4.4个百分点,光线遮蔽、藻萍干扰一级稻叶尖形状相似的复杂环境下的平均精度均值较原模型整体提升了6.2、6.1、5.7个百分点。ViT-改进YOLOv7模型的平均精度均值为92.6%,相比于YOLOv5s、YOLOXs、MobilenetV3-YOLOv7、YOLOv8和改进YOLOv7分别提高了11.6、10.1、5.0、4.2、4.4个百分点。研究结果可为稻田复杂环境的杂草精准识别提供支撑。
基金Supported by Special Project of Scientific and Technological Achievement Conversion in Jiangsu Province(BA2011098)
文摘To study the production technology of rice seeds,with Lianjing 7 as test material,this paper explores the effects of the key rice seed production,processing and storage technologies( such as nitrogen fertilizer application and management,weeding mode in seed breeding field,temperature control of mechanical drying and water control on seed storage) on the quality of rice seeds. The results show that the optimal application proportion of tillering stage dressing and earing fertilizer is 8: 2,followed by 7 : 3; the best time of weeding is booting stage,with the highest purity; the effect of drying and germination rate is best when the temperature is controlled at 44℃ in mechanical drying process; the seed storage quality and storage costs can be guaranteed when the water content of rice seed is controlled at 18%.