The thermal stability of the rare earth rich phase particles in α, α+β and β phase regions of Ti 5Al 4Sn 2Zr 1Mo 0 25Si 1Nd(Ti 55) high temperature titanium alloy heat treated was studied. Under ...The thermal stability of the rare earth rich phase particles in α, α+β and β phase regions of Ti 5Al 4Sn 2Zr 1Mo 0 25Si 1Nd(Ti 55) high temperature titanium alloy heat treated was studied. Under conditions of 600~980 ℃/1~100 h and 1050~1500 ℃/1~10 h, the average particle size ranges from 3 34 to 4 20 μm, the circularity shape factor from 0 619 to 0 759, and the volume fraction from 1 4% to 1 8%. The results show that nearly no change is found for the size, shape, and volume fraction of the particles in the alloy, and the rare earth rich phase particles exhibit thermal stability.展开更多
At the present time in china, the binder used in tungsten carbide composite button is mainly cobalt, which is very expensive. In order to solve the problems, a new type of rare earth and iron-rich diamond-enhanced tun...At the present time in china, the binder used in tungsten carbide composite button is mainly cobalt, which is very expensive. In order to solve the problems, a new type of rare earth and iron-rich diamond-enhanced tungsten carbide with high abrasive resistance and high toughness against impact, which realizes to substitute ferrum for cobalt, has been developed. The key problems in making the button are to improve the mechanical properties of matrix and increase the welding strength between the diamond and the matrix. All these problems have been solved effectively by low temperature activation hot-press sintering, doping rare earth lanthanum in matrix and high sintering pressure. The properties of the button have been determined under laboratory conditions. The test results show that its hardness is more than 90 HRA, its abrasive resistance is 39 times more than that of conventional cemented tungsten carbide, and its toughness against impact is more than 200 J. All these data show the button has very good mechanical properties.展开更多
Rare earth elements(REEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimet...Rare earth elements(REEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimetric method.The results showed that they were hydrogenous crusts with average ∑REE content of 2084.69 μg/g and the light REE(LREE)/heavy REE(HREE) ratio of 4.84.The shale-normalized REE patterns showed positive Ce anomalies.The total content of strictly trivalent REEs increased with water depth.The Ce content and LREE/HREE ratios in Fe-Mn crusts above 2000 m were lower than those below 2000 m.The change in REE with water depth could be explained by two processes:adsorptive scavenging by setting matters and behaviors of REE in seawater.However, the Ce abundance took no obvious correlation with water depth reflects the constant Ce flux.The Ce in crusts existed mainly as Ce(IV), implying that the oxidative-enriching process was controlled by kinetic factors.展开更多
Compared to North American shale composition (NASC), REE contents of sediments from the CC area in the Pacific Ocean are obviously high except that cerium has equal content to that of NASC. Three-valence rare earth el...Compared to North American shale composition (NASC), REE contents of sediments from the CC area in the Pacific Ocean are obviously high except that cerium has equal content to that of NASC. Three-valence rare earth elements were completely enriched in phosphate-phase and cerium in iron-phase. Rare earth elements in the sediments were originally derived from seawater. During lithi- genic and minerogenic processes of metalliferous nodules, three-valence rare earth elements in sediments mobilized and incorporated into sediments as authigenous biogenic-apatite, while cerium had change from Ce3+ to Ce4+ and directly precipitated from seawater and entered metalliferous nodules and caused Ce anomalies in REE pattern in sediments.展开更多
The application of K-rich nephline syenite ores would produce some tailings, which will cause many disadvantages such as more land occupation. In this research, an process was obtained to extract rare earth from the K...The application of K-rich nephline syenite ores would produce some tailings, which will cause many disadvantages such as more land occupation. In this research, an process was obtained to extract rare earth from the K-rich nephline syenite tailings of Gejiu, Yunnan province, China. This tailings mainly composed of K-feldspar, biotite, magnetite, andradite, nepheline and 0.1% rare earth. The chemical compositions are shown in Table 1.展开更多
REE contents of water and vegetables, from two typical RE-rich background regionsand normal region in Gainan,Jiangxi Province, China, indicatethat REE contents are markedlydifferent in water and vegetables.There are a...REE contents of water and vegetables, from two typical RE-rich background regionsand normal region in Gainan,Jiangxi Province, China, indicatethat REE contents are markedlydifferent in water and vegetables.There are average 0.03 mg·L-1and 0. 11 mg·L-1 REE in water ofA and B regions. As REE contentsof vegetables for A region are different from B region, it suggeststhat there are a lot of factors controlling REE distribution betweenvegetables. Comparing with thenormal region, soluble RE contentsin water of the RE-rich backgroundregions are factors of 68 and 18than that of the normal region.REE contents of the most plantsand crops in A and B regions arehigher than that in the normal region. It is clear that REE are theindispensable elements of plantsduring their growing period. Asthere are unusually higher REEcontents of some plants in A and Bthan in the normal regions, it isconsidered to result from absorbingREE passively during the period ofplants and crops growing up.展开更多
Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil t...Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil technique (HB). MS ribbons and HA foils were obtained in the experiment. The results demonstrate that with the increasing of cooling rates of TiAl based alloys great changes are taken place in the microstructures of rare earth rich phase, from scattering mainly on grain boundaries of as-cast ingot to distributing homogeneously as very fine fibers or powders (nanometer grade) on the matrix. The fine paralleling second phase fibers in the HA foils are considered to be connected with gamma/alpha (2) lamellar colonies. Selected area electronic diffraction (SAED) patterns of the rare earth rich phase is in accordance with that of intermetallic AlCe.展开更多
Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an...Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an effective modifying agent, which makes the coarse Fe rich impurity phases transform into complex compounds of tiny, sphere/short stick form, thus improving mechanical properties of this material; its modifying mechanism is in that RE gathering in front of solid/liquid interface enters into the impurity phases, forming complex (AlFeSiRE) compounds; or is adsorbed in the impurity phases surface, impeding the growth of impurity phases; however, excessive RE will result in the increasing of RE compounds (secondary phases), and plasticity reduction of this material. Therefore, its addition amount should be less than 0 07% (mass fraction).展开更多
Well-developed dissolution pores occur in the dolomites of the Sinian Dengying Formation, which is an important oil and gas reservoir layer in the Sichuan Basin and adjacent areas in southern China. The pores are ofte...Well-developed dissolution pores occur in the dolomites of the Sinian Dengying Formation, which is an important oil and gas reservoir layer in the Sichuan Basin and adjacent areas in southern China. The pores are often filled with quartz, and some dolomites have been metasomatically altered to siliceous chert. Few studies have documented the characteristics, source or origin of silica-rich fluids and their effects on the dolomite reservoir. The peak homogenisation temperatures (Th) of fluid inclusions in pore-filling quartz are between 150~C and 190~C, with an average of 173.7~C. Gases in the inclusions are mainly composed of CO2, CH4 and N2. Compared with host dolomite, pore-filling quartz and metasomatic chert contain higher amounts of Cr, Co, Mo, W and Fe, with average concentrations of 461.58, 3.99, 5.05, 31.43 and 6666.83 ppm in quartz and 308.98, 0.99, 1.04, 13.81 and 4703.50 ppm in chert, respectively. Strontium levels are lower than that in the host dolomite, with average concentrations in quartz and chert of 4.81 and 11.06 ppm, respectively. Rare earth element compositions in quartz and chert display positive Eu anomalies with a maximum δEu of 5.72. The δDsMow values of hydrogen isotopes in water from quartz inclusions vary from -85.1‰ to -53.1‰ with an average of-64.3‰, whereas the δ18OsMow values range from 7.2‰ to 8.5‰ with an average of 8.2‰. The average 87Sr/86Sr ratios in quartz and chert are 0.711586 and 0.709917, respectively, which are higher than that in the host dolomite. The fluid inclusions, elemental and isotopic compositions demonstrate that the formation of quartz and chert was related to silica-rich hydrothermal fluid and that the fluid was the deep circulation of meteoric water along basement faults. Interactions with silica-rich hydrothermal fluids resulted in densification of dolomite reservoirs in the Dengying Formation through quartz precipitation and siliceous metasomatism. However, it increased the resistance of the host dolomite to compaction, improving the ability to maintain reservoir spaces during deep burial. Evidence for silica-rich hydrothermal activity is common in the Yangtze Platform and Tarim Basin and its influence on deep dolomite reservoirs should be thoroughly considered.展开更多
The younger granitoids of the Shalatin district in the Southeastern Desert of Egypt, are of biotite and two-mica granite compositions. The geochemistry of rare-earth elements (REE), yttrium, thorium and uranium forms ...The younger granitoids of the Shalatin district in the Southeastern Desert of Egypt, are of biotite and two-mica granite compositions. The geochemistry of rare-earth elements (REE), yttrium, thorium and uranium forms the basis for many important methods to reconstruct igneous petrogenesis. Since the recognition that REE, Y, Th, U-rich accessories may play an important role in controlling the geochemistry of crustal melts, a considerable amount of work has been done in an attempt to understand their effects. However, this effort has been almost exclusively focused on three minerals: zircon, monazite and apatite. Nevertheless, the variety of REE-Th-U-rich accessories in granite rocks are neither limited to these three minerals nor are they always the main REE, Y, Th carriers. The geochemistry of REE, Y, Th and U reflects the behavior of accessories and some key major minerals such as garnet and feldspars, and may therefore give valuable information about the conditions of partial melting, melt segregation and crystallization of granite magmas in different crustal regimes. The geochemistry of U and Th during magmatic differentiation has been studied in many granites from different areas and it has been known that the U and Th contents of granitic rocks generally increase during differentiation, although in some cases they decrease. The Th/U ratio can either increase or decrease, depending on redox conditions, the volatile content or alteration by endogene or supergene solutions. The accessory assemblage of muscovite-rich granites and high-grade rocks is composed of monazite, xenotime, apatite, Th-orthosilicate, secondary U-mineralization and betafite-pyrochlore. REE, Y, Th and U are not suitable for geochemical modeling of granitoids by means of equilibrium-based trace element fractionation equations, but are still useful petrogenetic tools.展开更多
Photoluminescence (PL) characteristics of Tb-doped silicon rich oxide (SRO) films prepared by DC-sputtering and post-annealing processes were studied. The silicon richness of the SRO film could be controlled by va...Photoluminescence (PL) characteristics of Tb-doped silicon rich oxide (SRO) films prepared by DC-sputtering and post-annealing processes were studied. The silicon richness of the SRO film could be controlled by varying the sputtering power and oxygen concentration in the sputtering chamber. PL emission from the as-deposited sample was found to be composed of Th^3 + intra 4f transition-related emission and the silicon nano particle-related broad bandwidth emission. Thermal annealing could significantly improve the material properties as well as the PL signals. PL properties depended strongly upon the annealing scheme and silicon richness. Annealing at high temperatures (900- 1050℃) enhanced Tbrelated emission and suppressed the silicon nano particle-related emission. For samples with different silicon richness, annealing at 950 ℃ was found to produce higher PL signals than at other temperatures. It was attributed more to lifetime quenching than to concentration quenching. Electroluminescent (EL) devices with a capacitor structure were fabricated, the optimized process condition for the EL device was found to be different from that of PL emission. Among the annealing schemes that were used, wet oxidation was found to improve device performance the most, whereas, dry oxidation was found to improve material property the most. Wet oxidation allowed the breakdown electrical field to increase significantly and to reach above 10 mV·cm^-1. The EL spectra showed a typical Th^3+ emission, agreeing well with the PL spectra. The I-V measurements indicated that for 100 nm thick film, the Fowler-Nordheim tunneling started at an electrical field of around 6 mV·cm^-1 and the light emission became detectable at a current density of around 10-4 A·cm^-2 and higher. Strong electroluminescence light emission was detected when the electrical field was close to 10 mV·cm^-1.展开更多
The crystallographic structure, microstructure, composition homogeneity and electrode charge-discharge cycling stability were investigated of the as-cast and annealed La-rich mischmetal (designating Ml)-based hydrogen...The crystallographic structure, microstructure, composition homogeneity and electrode charge-discharge cycling stability were investigated of the as-cast and annealed La-rich mischmetal (designating Ml)-based hydrogen storage alloy with a composition of MlNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3). X-ray diffraction analysis shows that the MlNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3) alloy is composed of the dominant phase with a CaCu_5-type hexagonal structure and small amounts of the second phase with a La_2Ni_7-type structure. The annealing heat treatment conducted at 1273 K for 10 h results in decrease of the crystal lattice strain and composition segregation, disappearance of the dendrite structure and growth of the crystal grain of the MlNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3) alloy. The annealing causes the cycle life to be increased by about 30% over the as-cast alloy electrode. The cycling stability of the alloy electrode is improved significantly upon annealing. The cause of the improvement in the cycling stability was discussed based on the alloy composition distribution and microstructure changes due to annealing.展开更多
SiO_(2)-BaO基微晶玻璃以其膨胀系数高、耐高性能优异而成为耐高密封领域研究的热点,但稀土氧化物对该类封接玻璃改性的影响研究尚不多见。本工作研究不同高阳离子场强(Cation field strength,CFS)的稀土氧化物取代传统碱土氧化物BaO对...SiO_(2)-BaO基微晶玻璃以其膨胀系数高、耐高性能优异而成为耐高密封领域研究的热点,但稀土氧化物对该类封接玻璃改性的影响研究尚不多见。本工作研究不同高阳离子场强(Cation field strength,CFS)的稀土氧化物取代传统碱土氧化物BaO对新型富稀土—SiO_(2)-BaO-Ln_(2)O_(3)(SBLn,Ln=La、Sm、Er、Yb)系列玻璃的网络结构、结晶行为、微观结构和高温性能的影响。随着稀土阳离子场强由2.82(La^(3+))增大到3.98(Yb^(3+)),SBLn玻璃的玻璃转变温度(T_(g))、析晶起始温度(T_(x))、析晶峰值温度(T_(p))均逐渐增加,说明高稀土阳离子场强有利于提高SBLn玻璃的热稳定性。四类富稀土SBLn玻璃的结晶相均由BaSiO_(3)和BaSi2O5相组成,随稀土阳离子场强增大,BaSiO_(3)相减少、BaSi2O5相增多,稀土元素只存在于玻璃相中,不参与晶相析出。随着稀土阳离子场强增加,SBLn微晶玻璃的热膨胀系数(Coefficient of thermal expansion,CTE)由12.52×10^(–6)/℃增大到13.13×10^(–6)/℃(30~800℃),但析晶量下降导致软化温度从1313.5℃降至1174.1℃。总之,富稀微晶玻璃材料高热膨胀系数大于12×10^(–6)/℃、软化温度均高于1150℃,且在700℃高温下的直流电阻率大于106Ω·cm,说明富稀土微晶玻璃密封材料具有在固体氧化物燃料电池、氧传感器、铂薄膜热敏电阻器等高温场景下的应用前景。展开更多
文摘The thermal stability of the rare earth rich phase particles in α, α+β and β phase regions of Ti 5Al 4Sn 2Zr 1Mo 0 25Si 1Nd(Ti 55) high temperature titanium alloy heat treated was studied. Under conditions of 600~980 ℃/1~100 h and 1050~1500 ℃/1~10 h, the average particle size ranges from 3 34 to 4 20 μm, the circularity shape factor from 0 619 to 0 759, and the volume fraction from 1 4% to 1 8%. The results show that nearly no change is found for the size, shape, and volume fraction of the particles in the alloy, and the rare earth rich phase particles exhibit thermal stability.
文摘At the present time in china, the binder used in tungsten carbide composite button is mainly cobalt, which is very expensive. In order to solve the problems, a new type of rare earth and iron-rich diamond-enhanced tungsten carbide with high abrasive resistance and high toughness against impact, which realizes to substitute ferrum for cobalt, has been developed. The key problems in making the button are to improve the mechanical properties of matrix and increase the welding strength between the diamond and the matrix. All these problems have been solved effectively by low temperature activation hot-press sintering, doping rare earth lanthanum in matrix and high sintering pressure. The properties of the button have been determined under laboratory conditions. The test results show that its hardness is more than 90 HRA, its abrasive resistance is 39 times more than that of conventional cemented tungsten carbide, and its toughness against impact is more than 200 J. All these data show the button has very good mechanical properties.
基金supported by the National Natural Science Foundation of China(40704029 40376016)+1 种基金China International Science and Technology Cooperation Project (2006DFB21620)the Young People Marine Science Foundation of State Oceanic Administration (2005304)
文摘Rare earth elements(REEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimetric method.The results showed that they were hydrogenous crusts with average ∑REE content of 2084.69 μg/g and the light REE(LREE)/heavy REE(HREE) ratio of 4.84.The shale-normalized REE patterns showed positive Ce anomalies.The total content of strictly trivalent REEs increased with water depth.The Ce content and LREE/HREE ratios in Fe-Mn crusts above 2000 m were lower than those below 2000 m.The change in REE with water depth could be explained by two processes:adsorptive scavenging by setting matters and behaviors of REE in seawater.However, the Ce abundance took no obvious correlation with water depth reflects the constant Ce flux.The Ce in crusts existed mainly as Ce(IV), implying that the oxidative-enriching process was controlled by kinetic factors.
基金the R&D Project on the Oceanic Metalliferous Nodue during the "Ninth- Five- YearPlan"(No. DY95 ~ 02 ~ 10).
文摘Compared to North American shale composition (NASC), REE contents of sediments from the CC area in the Pacific Ocean are obviously high except that cerium has equal content to that of NASC. Three-valence rare earth elements were completely enriched in phosphate-phase and cerium in iron-phase. Rare earth elements in the sediments were originally derived from seawater. During lithi- genic and minerogenic processes of metalliferous nodules, three-valence rare earth elements in sediments mobilized and incorporated into sediments as authigenous biogenic-apatite, while cerium had change from Ce3+ to Ce4+ and directly precipitated from seawater and entered metalliferous nodules and caused Ce anomalies in REE pattern in sediments.
文摘The application of K-rich nephline syenite ores would produce some tailings, which will cause many disadvantages such as more land occupation. In this research, an process was obtained to extract rare earth from the K-rich nephline syenite tailings of Gejiu, Yunnan province, China. This tailings mainly composed of K-feldspar, biotite, magnetite, andradite, nepheline and 0.1% rare earth. The chemical compositions are shown in Table 1.
文摘REE contents of water and vegetables, from two typical RE-rich background regionsand normal region in Gainan,Jiangxi Province, China, indicatethat REE contents are markedlydifferent in water and vegetables.There are average 0.03 mg·L-1and 0. 11 mg·L-1 REE in water ofA and B regions. As REE contentsof vegetables for A region are different from B region, it suggeststhat there are a lot of factors controlling REE distribution betweenvegetables. Comparing with thenormal region, soluble RE contentsin water of the RE-rich backgroundregions are factors of 68 and 18than that of the normal region.REE contents of the most plantsand crops in A and B regions arehigher than that in the normal region. It is clear that REE are theindispensable elements of plantsduring their growing period. Asthere are unusually higher REEcontents of some plants in A and Bthan in the normal regions, it isconsidered to result from absorbingREE passively during the period ofplants and crops growing up.
文摘Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil technique (HB). MS ribbons and HA foils were obtained in the experiment. The results demonstrate that with the increasing of cooling rates of TiAl based alloys great changes are taken place in the microstructures of rare earth rich phase, from scattering mainly on grain boundaries of as-cast ingot to distributing homogeneously as very fine fibers or powders (nanometer grade) on the matrix. The fine paralleling second phase fibers in the HA foils are considered to be connected with gamma/alpha (2) lamellar colonies. Selected area electronic diffraction (SAED) patterns of the rare earth rich phase is in accordance with that of intermetallic AlCe.
文摘Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an effective modifying agent, which makes the coarse Fe rich impurity phases transform into complex compounds of tiny, sphere/short stick form, thus improving mechanical properties of this material; its modifying mechanism is in that RE gathering in front of solid/liquid interface enters into the impurity phases, forming complex (AlFeSiRE) compounds; or is adsorbed in the impurity phases surface, impeding the growth of impurity phases; however, excessive RE will result in the increasing of RE compounds (secondary phases), and plasticity reduction of this material. Therefore, its addition amount should be less than 0 07% (mass fraction).
基金financially supported by the National Natural Science Foundation of China (grants No.41372149, 41625009, 41230312 and U1663209)Strategic Priority Research Program of the Chinese Academy of Science (grant No.XDA14010201)
文摘Well-developed dissolution pores occur in the dolomites of the Sinian Dengying Formation, which is an important oil and gas reservoir layer in the Sichuan Basin and adjacent areas in southern China. The pores are often filled with quartz, and some dolomites have been metasomatically altered to siliceous chert. Few studies have documented the characteristics, source or origin of silica-rich fluids and their effects on the dolomite reservoir. The peak homogenisation temperatures (Th) of fluid inclusions in pore-filling quartz are between 150~C and 190~C, with an average of 173.7~C. Gases in the inclusions are mainly composed of CO2, CH4 and N2. Compared with host dolomite, pore-filling quartz and metasomatic chert contain higher amounts of Cr, Co, Mo, W and Fe, with average concentrations of 461.58, 3.99, 5.05, 31.43 and 6666.83 ppm in quartz and 308.98, 0.99, 1.04, 13.81 and 4703.50 ppm in chert, respectively. Strontium levels are lower than that in the host dolomite, with average concentrations in quartz and chert of 4.81 and 11.06 ppm, respectively. Rare earth element compositions in quartz and chert display positive Eu anomalies with a maximum δEu of 5.72. The δDsMow values of hydrogen isotopes in water from quartz inclusions vary from -85.1‰ to -53.1‰ with an average of-64.3‰, whereas the δ18OsMow values range from 7.2‰ to 8.5‰ with an average of 8.2‰. The average 87Sr/86Sr ratios in quartz and chert are 0.711586 and 0.709917, respectively, which are higher than that in the host dolomite. The fluid inclusions, elemental and isotopic compositions demonstrate that the formation of quartz and chert was related to silica-rich hydrothermal fluid and that the fluid was the deep circulation of meteoric water along basement faults. Interactions with silica-rich hydrothermal fluids resulted in densification of dolomite reservoirs in the Dengying Formation through quartz precipitation and siliceous metasomatism. However, it increased the resistance of the host dolomite to compaction, improving the ability to maintain reservoir spaces during deep burial. Evidence for silica-rich hydrothermal activity is common in the Yangtze Platform and Tarim Basin and its influence on deep dolomite reservoirs should be thoroughly considered.
文摘The younger granitoids of the Shalatin district in the Southeastern Desert of Egypt, are of biotite and two-mica granite compositions. The geochemistry of rare-earth elements (REE), yttrium, thorium and uranium forms the basis for many important methods to reconstruct igneous petrogenesis. Since the recognition that REE, Y, Th, U-rich accessories may play an important role in controlling the geochemistry of crustal melts, a considerable amount of work has been done in an attempt to understand their effects. However, this effort has been almost exclusively focused on three minerals: zircon, monazite and apatite. Nevertheless, the variety of REE-Th-U-rich accessories in granite rocks are neither limited to these three minerals nor are they always the main REE, Y, Th carriers. The geochemistry of REE, Y, Th and U reflects the behavior of accessories and some key major minerals such as garnet and feldspars, and may therefore give valuable information about the conditions of partial melting, melt segregation and crystallization of granite magmas in different crustal regimes. The geochemistry of U and Th during magmatic differentiation has been studied in many granites from different areas and it has been known that the U and Th contents of granitic rocks generally increase during differentiation, although in some cases they decrease. The Th/U ratio can either increase or decrease, depending on redox conditions, the volatile content or alteration by endogene or supergene solutions. The accessory assemblage of muscovite-rich granites and high-grade rocks is composed of monazite, xenotime, apatite, Th-orthosilicate, secondary U-mineralization and betafite-pyrochlore. REE, Y, Th and U are not suitable for geochemical modeling of granitoids by means of equilibrium-based trace element fractionation equations, but are still useful petrogenetic tools.
文摘Photoluminescence (PL) characteristics of Tb-doped silicon rich oxide (SRO) films prepared by DC-sputtering and post-annealing processes were studied. The silicon richness of the SRO film could be controlled by varying the sputtering power and oxygen concentration in the sputtering chamber. PL emission from the as-deposited sample was found to be composed of Th^3 + intra 4f transition-related emission and the silicon nano particle-related broad bandwidth emission. Thermal annealing could significantly improve the material properties as well as the PL signals. PL properties depended strongly upon the annealing scheme and silicon richness. Annealing at high temperatures (900- 1050℃) enhanced Tbrelated emission and suppressed the silicon nano particle-related emission. For samples with different silicon richness, annealing at 950 ℃ was found to produce higher PL signals than at other temperatures. It was attributed more to lifetime quenching than to concentration quenching. Electroluminescent (EL) devices with a capacitor structure were fabricated, the optimized process condition for the EL device was found to be different from that of PL emission. Among the annealing schemes that were used, wet oxidation was found to improve device performance the most, whereas, dry oxidation was found to improve material property the most. Wet oxidation allowed the breakdown electrical field to increase significantly and to reach above 10 mV·cm^-1. The EL spectra showed a typical Th^3+ emission, agreeing well with the PL spectra. The I-V measurements indicated that for 100 nm thick film, the Fowler-Nordheim tunneling started at an electrical field of around 6 mV·cm^-1 and the light emission became detectable at a current density of around 10-4 A·cm^-2 and higher. Strong electroluminescence light emission was detected when the electrical field was close to 10 mV·cm^-1.
文摘The crystallographic structure, microstructure, composition homogeneity and electrode charge-discharge cycling stability were investigated of the as-cast and annealed La-rich mischmetal (designating Ml)-based hydrogen storage alloy with a composition of MlNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3). X-ray diffraction analysis shows that the MlNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3) alloy is composed of the dominant phase with a CaCu_5-type hexagonal structure and small amounts of the second phase with a La_2Ni_7-type structure. The annealing heat treatment conducted at 1273 K for 10 h results in decrease of the crystal lattice strain and composition segregation, disappearance of the dendrite structure and growth of the crystal grain of the MlNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3) alloy. The annealing causes the cycle life to be increased by about 30% over the as-cast alloy electrode. The cycling stability of the alloy electrode is improved significantly upon annealing. The cause of the improvement in the cycling stability was discussed based on the alloy composition distribution and microstructure changes due to annealing.
文摘SiO_(2)-BaO基微晶玻璃以其膨胀系数高、耐高性能优异而成为耐高密封领域研究的热点,但稀土氧化物对该类封接玻璃改性的影响研究尚不多见。本工作研究不同高阳离子场强(Cation field strength,CFS)的稀土氧化物取代传统碱土氧化物BaO对新型富稀土—SiO_(2)-BaO-Ln_(2)O_(3)(SBLn,Ln=La、Sm、Er、Yb)系列玻璃的网络结构、结晶行为、微观结构和高温性能的影响。随着稀土阳离子场强由2.82(La^(3+))增大到3.98(Yb^(3+)),SBLn玻璃的玻璃转变温度(T_(g))、析晶起始温度(T_(x))、析晶峰值温度(T_(p))均逐渐增加,说明高稀土阳离子场强有利于提高SBLn玻璃的热稳定性。四类富稀土SBLn玻璃的结晶相均由BaSiO_(3)和BaSi2O5相组成,随稀土阳离子场强增大,BaSiO_(3)相减少、BaSi2O5相增多,稀土元素只存在于玻璃相中,不参与晶相析出。随着稀土阳离子场强增加,SBLn微晶玻璃的热膨胀系数(Coefficient of thermal expansion,CTE)由12.52×10^(–6)/℃增大到13.13×10^(–6)/℃(30~800℃),但析晶量下降导致软化温度从1313.5℃降至1174.1℃。总之,富稀微晶玻璃材料高热膨胀系数大于12×10^(–6)/℃、软化温度均高于1150℃,且在700℃高温下的直流电阻率大于106Ω·cm,说明富稀土微晶玻璃密封材料具有在固体氧化物燃料电池、氧传感器、铂薄膜热敏电阻器等高温场景下的应用前景。