The traditional zinc hydro-metallurgy generates a large amount of zinc ferrite residue rich in valuable metals. The separation of iron is crucial for resource recycling of valuable metals in zinc ferrite residue. A no...The traditional zinc hydro-metallurgy generates a large amount of zinc ferrite residue rich in valuable metals. The separation of iron is crucial for resource recycling of valuable metals in zinc ferrite residue. A novel selective reduction roasting?leaching process was proposed to separate zinc and iron from zinc leaching residue which contains zinc ferrite. The thermodynamic analysis was employed to determine the predominant range of Fe3O4 and ZnO during reduction roasting process of zinc ferrite. Based on the result of thermodynamic calculation, we found thatV(CO)/V(CO+CO2) ratio is a key factor determining the phase composition in the reduction roasting product of zinc ferrite. In the range ofV(CO)/V(CO+CO2) ratio between 2.68% and 36.18%, zinc ferrite is preferentially decomposed into Fe3O4 and ZnO. Based on thermogravimetric (TG) analysis, the optimal conditions for reduction roasting of zinc ferrite are determined as follows: temperature 700?750 °C, volume fraction of CO 6% and V(CO)/V(CO+CO2) ratio 30%. Based on the above results, zinc leaching residue rich in zinc ferrite was roasted and the roasted product was leached by acid solution. It is found that zinc extraction rate in zinc leaching residue reaches up to 70% and iron extraction rate is only 18.4%. The result indicates that zinc and iron can be effectively separated from zinc leaching residue.展开更多
To address the hazardous by-product of zinc smelting and resource utilization of jarosite residue,this study applies an electric field-assisted hot acid treatment to completely recycle iron(Fe).This innovative approac...To address the hazardous by-product of zinc smelting and resource utilization of jarosite residue,this study applies an electric field-assisted hot acid treatment to completely recycle iron(Fe).This innovative approach aims to enhance the leaching efficiency of Fe from jarosite residue.The introduction of an electric field changes the charge distribution on the surface of the particles to enhance ions and electrons exchange and promotes the collision between particles to strengthen reaction kinetics.Based on the above,the leaching efficiency of Fe in jarosite under sulfuric acid attack has improved observably.The result shows that Fe leaching efficiency reaches 98.83%,which is increased by 28%under the optimal experimental conditions:current density of 30 mA·cm^(-2),H_(2)SO_(4) concentration of 1.5 mol·L^(-1),solid-liquid ratio of 70 g·L^(-1),temperature of 80℃ and time of 12 h.Leaching kinetics calculations show that the apparent activation energy is 16.97 kJ·mol^(-1) and the leaching of jarosite residue is controlled by a mixture of chemical reaction and diffusion,as well as the temperature and concentration of the leaching solution have an influence on leaching.This work provides a feasible idea for the efficient leaching of Fe from jarosite residue.展开更多
ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment fr...ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment friendly fertilizer was explored. ResultThe results show that compared with urea treatment, slow-release nitrogen fertilizer treatments could reduce nitrate nitrogen content and leaching amount in soils. Compared with PCU30 and IU treatments, the PCU60 treatment became more efficient in reducing nitrate content and leaching amount in 0-90 cm soil layer. ConclusionIn summary, slow-release nitrogen fertilizer, which can reduce soil nitrate content and leaching losses, is a kind of novel fertilizer with high environmental benefit and promising application.展开更多
The leaching kinetics of silver and lead simultaneously from zinc residue by chloride was investigated.The effects of stirring speed,temperature,sodium chloride concentration,particle size and liquid/solid ratio on Ag...The leaching kinetics of silver and lead simultaneously from zinc residue by chloride was investigated.The effects of stirring speed,temperature,sodium chloride concentration,particle size and liquid/solid ratio on Ag and Pb dissolution in sodium chloride were studied.It was determined that the dissolution rates increased with increasing sodium chloride concentration,temperature and decreasing particle size.The dissolution kinetics followed a shrinking core model,with inter-diffusion through gangue layer as the rate determining step.This finding is in accordance with the apparent activation energy(E_a) of 26.8 kJ·mol^(-1)(Ag) and 26.5 kJ·mol^(-1)(Pb),and a linear relationship between the rate constant and the reciprocal of squared particle size.The orders of reaction with respect to sodium chloride concentration,temperature and particle size were also achieved.The rate of reaction based on diffusion-controlled process can be expressed by semi-empirical equations.展开更多
Increasing attention has been paid to air pollution control (APC) residues in China recently due to the rising proportion of waste incineration and the hazardous characteristics of the residues, among which heavy me...Increasing attention has been paid to air pollution control (APC) residues in China recently due to the rising proportion of waste incineration and the hazardous characteristics of the residues, among which heavy metal leaching toxicity plays an important role. Leaching behavior and potential risk of Pb and Zn in the APC residues from a Shanghai municipal solid waste (MSW) incinerator was studied, based on the leaching tests under different conditions and theoretical calculation using a geochemical thermodynamic equilibrium model MINTEQA2. Results showed that, extractant species and liquid to solid (L/S) ratio predominantly controlled the leaching toxicity of Pb and Zn, while ionic strength, vibration method and leaching time had less effect on the metals release. Leachate/final pH determined the metal leaching behavior, which changed the speciation of heavy metals in the extraction system. The equilibrium aqueous speciation, precipitation-dissolution of Pb and Zn was investigated according to the model computation, which was well in agreement with the experimental results.展开更多
A new technology of treating molybdenum residues by simultaneous ultrafine milling and alkali leaching was put forward to recover molybdenum from metallurgical residues. The effects of residue size, milling time, soli...A new technology of treating molybdenum residues by simultaneous ultrafine milling and alkali leaching was put forward to recover molybdenum from metallurgical residues. The effects of residue size, milling time, solid content, n (Na 2CO 3)/ n (Mo) and slurry pH value on molybdenum leaching rate were investigated. The results indicate that a simpler process, lower slurry temperature, 50% shorter treating time, 60% decrease of Na 2CO 3 content and 15% increase of molybdenum leaching rate can be obtained by the new technology compared with the traditional process. The leaching kinetic equation was determined, and calculation of active energy ( E =56.2 kJ/mol) shows that the leaching process of molybdenum residues by simultaneous ultrafine milling and alkali leaching is controlled by chemical reaction. Potential exists for the new process to form the basis for an economically viable, environmentally friendly process to recover valuable elements from residues.展开更多
Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental acti...Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental activity and potential ecological risks of heavy metals in zinc leaching residue.The results demonstrate that the environmental activity of heavy metals declines in the following order:CdZnCuAsPb.Potential ecological risk indices for single heavy metal are CdZnCuAsPb.Cd has serious potential ecological risk to the ecological environment and contributes most to the potential toxicity response indices for various heavy metals in the residue.展开更多
Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and...Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and FTIR. The toxicity characteristic leaching procedure (TCLP) was used to investigate the environmental activity of zinc leaching residue for a short contact time. The phase composition analysis indicated that the zinc leaching residue mainly consists of super refined flocculent particles including zinc ferrite, sulfate and silicate. The physical structural analysis showed that it has a thermal instability and strong water absorption properties. The results of TCLP indicated that the amounts of Zn and Cd in the leaching solution exceed 40 and 90 times of limit, respectively, which demonstrate that this residue is unstable in weak acidic environment for a short contact time.展开更多
As for the leaching-resistant zinc residues, the silver leaching rate can be over 98% through the process of pressurized preoxidation and thiourea leaching. Compared with the method of extracting the silver directly f...As for the leaching-resistant zinc residues, the silver leaching rate can be over 98% through the process of pressurized preoxidation and thiourea leaching. Compared with the method of extracting the silver directly from the leaching-resistant zinc residues, the silver leaching rate is greatly improved. The optimum preoxidation conditions are: particle size range 4060 μm, oxygen partial pressure 10 6 Pa, temperature 8090 ℃, pH=1.0, and leaching time 5 h. After pretreatment, the time of thiourea leaching silver is shortened to 1.5 h, and the thiourea consumption is reduced greatly. The oxidation mechanism and the thiourea leaching kinetics were also explored.展开更多
Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environme...Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environment. The ZNLR contained approximately 35.99% Zn, 15.93% Fe and 0.26% Cd, and Cd mainly existed as ferrites in the ZNLR in this research. Reductive acid leaching of ZNLR was investigated. The effects of hydrazine sulfate concentration, initial sulfuric acid concentration, temperature, duration and liquid-to-solid ratio on the extraction of Cd, Zn and Fe were examined. The extraction efficiencies of Cd, Zn and Fe reached 90.81%, 95.83% and 94.19%, respectively when the leaching parameters were fixed as follows: hydrazine sulfate concentration, 33.3 g/L; sulfuric acid concentration, 80 g/L; temperature, 95 °C; duration of leaching, 120 min; liquid-to-solid ratio, 10 m L/g and agitation, 400 r/min. XRD and SEM-EDS analyses of the leaching residue confirmed that lead sulfate(Pb SO4) and hydrazinium zinc sulfate((N2H5)2Zn(SO4)2) were the main phases remaining in the reductive leaching residue.展开更多
The feasibility of leaching and recovery of zinc from zinc leaching residue (ZLR) based on a membrane filter press (MFP) was investigated. Experimental results show that zinc calcines with particle sizes of less t...The feasibility of leaching and recovery of zinc from zinc leaching residue (ZLR) based on a membrane filter press (MFP) was investigated. Experimental results show that zinc calcines with particle sizes of less than 106 μm and chambers of widths of 30 mm are appropriate for establishing uniform filter cakes to obtain acceptable leaching and recovery results. The leaching of zinc from ZLR performed via washing at 90 to 96 ℃ for 90 min with spent electrolyte using a MFP results in a zinc extraction rate of 97%, and almost all of the zinc leached are recovered after water washing with MFP, thereby avoiding any loss in the ZLR. Compared with the traditional hot concentrated acid leaching process, the process based on MFP as a leaching reactor is able not only to ensure a high extraction rate but also to reduce the leaching time. Moreover, the thickening, pulping, second leaching, washing, filtering and pressing could be integrated and realized using a single MFP.展开更多
Huge quantities of zinc leaching residues(ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heav...Huge quantities of zinc leaching residues(ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals(mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L^(-1), a liquid/solid ratio of 4:1(m L/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L^(-1), a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.展开更多
This article investigated molybdenum recovery from oxygen pressure water leaching residue of Ni-Mo ore using alkaline leaching, followed by chemical treatment of leach liquor. Parameters affecting Mo leaching rate, su...This article investigated molybdenum recovery from oxygen pressure water leaching residue of Ni-Mo ore using alkaline leaching, followed by chemical treatment of leach liquor. Parameters affecting Mo leaching rate, such as sodium hydroxide concentration, reaction time, a liquid- to-solid ratio, and temperature for the preliminary alkaline leaching were experimentally determined. The results showed that more than 88 % of molybdenum was leached under the optimum conditions (2.5 ml.g-1 NaOH, 80 ℃, a liquid to solid ratio 3 ml.g-1, and reaction time 3 h). After the purification of leach liquor, a CaMoO4 product of 99.2 % purity could be obtained by CaCla precipitation method. The whole Mo recovery reached about 82.7 %.展开更多
To provide a theoretical basis for a suitable process to extract gold from refractory gold concentrates, process mineralogy on the acid leaching residue of gold calcine was studied by chemical composition, X-ray diffr...To provide a theoretical basis for a suitable process to extract gold from refractory gold concentrates, process mineralogy on the acid leaching residue of gold calcine was studied by chemical composition, X-ray diffraction, scanning electron microscopy-energy spectrum, and mineral dissociation analysis. The results showed that the acid leaching residue contained Au 68.22 g/t, Ag 92.71 g/t, Fe 0.44%, As 0.10%, and S 0.55%. Gold and silver minerals existed as native gold, argentite, and proustite. Quartz, the main gangue mineral, accounted for 78.33 wt/%. The dissociation degree analysis showed that the proportions of monomer and exposed gold in acid leaching residue were 96.66 wt%. The cyanidation results showed that the cyanide gold leaching rate of acid leaching residues was close to 100 wt%. However, the maximum cyanide gold leaching rate of gold calcine was only 85.31 wt%. This suggests that acid leaching can increase the gold dissolution rate in the cyanide process.展开更多
Zinc leaching residue(ZLR),produced from traditional zinc hydrometallurgy process,is not only a hazardous waste but also a potential valuable solid.The combination of sulfate roasting and water leaching was employed t...Zinc leaching residue(ZLR),produced from traditional zinc hydrometallurgy process,is not only a hazardous waste but also a potential valuable solid.The combination of sulfate roasting and water leaching was employed to recover the valuable metals from ZLR.The ZLR was initially roasted with ferric sulfate at640°C for1h with ferric sulfate/zinc ferrite mole ratio of1.2.In this process,the valuable metals were efficiently transformed into water soluble sulfate,while iron remains as ferric oxide.Thereafter,water leaching was conducted to extract the valuable metals sulfate for recovery.The recovery rates of zinc,manganese,copper,cadmium and iron were92.4%,93.3%,99.3%,91.4%and1.1%,respectively.A leaching toxicity test for ZLR was performed after water leaching.The results indicated that the final residue was effectively detoxified and all of the heavy metal leaching concentrations were under the allowable limit.展开更多
Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study propo...Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study proposed a new process involving sulfidation roasting, magnetic separation and flotation to recover zinc and iron in ZLR. Through sulfidation roasting of ZLR with pyrite, zinc and iron were converted into ZnS and Fe3 O4. The effects of pyrite dosage, roasting temperature and roasting time on the sulfidation of zinc in ZLR were investigated. The results showed that the sulfidation percentage of zinc reached 91.8% under the optimum condition. Besides, it was found that ball-milling was favorable for the separation and recovery of zinc and iron in sulfidation products. After ball-milling pretreatment, iron and zinc were enriched from sulfidation products by magnetic separation and flotation. The grade of iron in magnetic concentrates was 52.3% and the grade of zinc in flotation concentrates was 31.7%, which realized the recovery of resources.展开更多
Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions...Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.展开更多
A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly p...A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaC12 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were inves- tigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaC12 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching tempera- ture of 80℃, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.展开更多
This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline...This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline anion(HCO3^-,CO3^2-,OH^-,AlO2^-)concentration reduced from 38.89 to 25.50 mmol/L,leaching rate of soluble sodium was 80.86%with ammonium chloride addition of 0.75%,liquid/solid(L/S)ratio of 3(mL/g),temperature of 30°C and reaction time of 18 h;L/S ratio was the main factor affecting the removal of alkaline anion and the leaching of sodium.Furthermore,ammonium chloride promoted the dissolution of diaspore and changed the micro/morphological characteristics with the increase of massive structure.The findings of this work will contribute to achieve soil-formation of bauxite residue.展开更多
Bauxite residue,a highly saline solid waste produced from digestion of bauxite for alumina production,is hazardous to the environment and restricts vegetation establishment in bauxite residue disposal areas.A novel wa...Bauxite residue,a highly saline solid waste produced from digestion of bauxite for alumina production,is hazardous to the environment and restricts vegetation establishment in bauxite residue disposal areas.A novel water leaching process proposed here was used to investigate the dynamic migration and vertical distribution of saline ions in bauxite residue.The results show that water leaching significantly reduced the salinity of bauxite residue,leaching both saline cations Na+,K+,Ca2+and anions CO32-,SO42-,HCO3-.Na+and K+migrated from 40-50 to 20-30 cm of the column,presenting a high migration capacity.The migration capacity of Ca2+was lower and accumulated at 30-40 cm of the column.CO32-initially distributed at 20-30 cm of the column,subsequently transported to 30-40 cm of the column,and finally returned to 20-30 cm of the column along with evaporation.SO42-was originally distributed at 40-50 cm,but finally migrated to 20-30 cm of the column.Nevertheless,HCO3-remained at the bottom of the column,and its migratory was less affected by evaporation.展开更多
基金Project(2011AA061001)supported by the National High-tech Research and Development Program of ChinaProject(2014FJ1011)supported by the Major Science and Technology Project of Hunan Province,China
文摘The traditional zinc hydro-metallurgy generates a large amount of zinc ferrite residue rich in valuable metals. The separation of iron is crucial for resource recycling of valuable metals in zinc ferrite residue. A novel selective reduction roasting?leaching process was proposed to separate zinc and iron from zinc leaching residue which contains zinc ferrite. The thermodynamic analysis was employed to determine the predominant range of Fe3O4 and ZnO during reduction roasting process of zinc ferrite. Based on the result of thermodynamic calculation, we found thatV(CO)/V(CO+CO2) ratio is a key factor determining the phase composition in the reduction roasting product of zinc ferrite. In the range ofV(CO)/V(CO+CO2) ratio between 2.68% and 36.18%, zinc ferrite is preferentially decomposed into Fe3O4 and ZnO. Based on thermogravimetric (TG) analysis, the optimal conditions for reduction roasting of zinc ferrite are determined as follows: temperature 700?750 °C, volume fraction of CO 6% and V(CO)/V(CO+CO2) ratio 30%. Based on the above results, zinc leaching residue rich in zinc ferrite was roasted and the roasted product was leached by acid solution. It is found that zinc extraction rate in zinc leaching residue reaches up to 70% and iron extraction rate is only 18.4%. The result indicates that zinc and iron can be effectively separated from zinc leaching residue.
基金The National Natural Science Foundation of China(22276153,51974262)funded this work。
文摘To address the hazardous by-product of zinc smelting and resource utilization of jarosite residue,this study applies an electric field-assisted hot acid treatment to completely recycle iron(Fe).This innovative approach aims to enhance the leaching efficiency of Fe from jarosite residue.The introduction of an electric field changes the charge distribution on the surface of the particles to enhance ions and electrons exchange and promotes the collision between particles to strengthen reaction kinetics.Based on the above,the leaching efficiency of Fe in jarosite under sulfuric acid attack has improved observably.The result shows that Fe leaching efficiency reaches 98.83%,which is increased by 28%under the optimal experimental conditions:current density of 30 mA·cm^(-2),H_(2)SO_(4) concentration of 1.5 mol·L^(-1),solid-liquid ratio of 70 g·L^(-1),temperature of 80℃ and time of 12 h.Leaching kinetics calculations show that the apparent activation energy is 16.97 kJ·mol^(-1) and the leaching of jarosite residue is controlled by a mixture of chemical reaction and diffusion,as well as the temperature and concentration of the leaching solution have an influence on leaching.This work provides a feasible idea for the efficient leaching of Fe from jarosite residue.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201003014)Youth Foundation of Beijing Academy of Agricultural and Forestry Sciences(QNJJ201311)~~
文摘ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment friendly fertilizer was explored. ResultThe results show that compared with urea treatment, slow-release nitrogen fertilizer treatments could reduce nitrate nitrogen content and leaching amount in soils. Compared with PCU30 and IU treatments, the PCU60 treatment became more efficient in reducing nitrate content and leaching amount in 0-90 cm soil layer. ConclusionIn summary, slow-release nitrogen fertilizer, which can reduce soil nitrate content and leaching losses, is a kind of novel fertilizer with high environmental benefit and promising application.
基金supported by the Natural Science Foundation of Shandong Province,China (No.ZR2010EL006)High Education Science Technology Program of Shangdong Province (No. J12LA04)
文摘The leaching kinetics of silver and lead simultaneously from zinc residue by chloride was investigated.The effects of stirring speed,temperature,sodium chloride concentration,particle size and liquid/solid ratio on Ag and Pb dissolution in sodium chloride were studied.It was determined that the dissolution rates increased with increasing sodium chloride concentration,temperature and decreasing particle size.The dissolution kinetics followed a shrinking core model,with inter-diffusion through gangue layer as the rate determining step.This finding is in accordance with the apparent activation energy(E_a) of 26.8 kJ·mol^(-1)(Ag) and 26.5 kJ·mol^(-1)(Pb),and a linear relationship between the rate constant and the reciprocal of squared particle size.The orders of reaction with respect to sodium chloride concentration,temperature and particle size were also achieved.The rate of reaction based on diffusion-controlled process can be expressed by semi-empirical equations.
基金The Key Project of Shanghai Council of Science and Technology(No. 032312043)
文摘Increasing attention has been paid to air pollution control (APC) residues in China recently due to the rising proportion of waste incineration and the hazardous characteristics of the residues, among which heavy metal leaching toxicity plays an important role. Leaching behavior and potential risk of Pb and Zn in the APC residues from a Shanghai municipal solid waste (MSW) incinerator was studied, based on the leaching tests under different conditions and theoretical calculation using a geochemical thermodynamic equilibrium model MINTEQA2. Results showed that, extractant species and liquid to solid (L/S) ratio predominantly controlled the leaching toxicity of Pb and Zn, while ionic strength, vibration method and leaching time had less effect on the metals release. Leachate/final pH determined the metal leaching behavior, which changed the speciation of heavy metals in the extraction system. The equilibrium aqueous speciation, precipitation-dissolution of Pb and Zn was investigated according to the model computation, which was well in agreement with the experimental results.
文摘A new technology of treating molybdenum residues by simultaneous ultrafine milling and alkali leaching was put forward to recover molybdenum from metallurgical residues. The effects of residue size, milling time, solid content, n (Na 2CO 3)/ n (Mo) and slurry pH value on molybdenum leaching rate were investigated. The results indicate that a simpler process, lower slurry temperature, 50% shorter treating time, 60% decrease of Na 2CO 3 content and 15% increase of molybdenum leaching rate can be obtained by the new technology compared with the traditional process. The leaching kinetic equation was determined, and calculation of active energy ( E =56.2 kJ/mol) shows that the leaching process of molybdenum residues by simultaneous ultrafine milling and alkali leaching is controlled by chemical reaction. Potential exists for the new process to form the basis for an economically viable, environmentally friendly process to recover valuable elements from residues.
基金Project(50925417) supported by the National Natural Science Funds for Distinguished Young Scholar of ChinaProject(2010AA065203) supported by the High Technology Research and Development Program of China+2 种基金Project(2010-609) Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject(ncet-10-0840) supported by Program for New Century Excellent Talents in UniversityProject(2012FJ1080) supported by Key Projects of Science and Technology of Hunan Province,China
文摘Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental activity and potential ecological risks of heavy metals in zinc leaching residue.The results demonstrate that the environmental activity of heavy metals declines in the following order:CdZnCuAsPb.Potential ecological risk indices for single heavy metal are CdZnCuAsPb.Cd has serious potential ecological risk to the ecological environment and contributes most to the potential toxicity response indices for various heavy metals in the residue.
基金Project(2011AA061001)supported by the Hi-Tech Research and Development Program of ChinaProject(50830301)supported by theKey Program of National Natural Science Foundation of ChinaProject(50925417)supported by the National Science Fund for Distinguished Young Scientists of China
文摘Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and FTIR. The toxicity characteristic leaching procedure (TCLP) was used to investigate the environmental activity of zinc leaching residue for a short contact time. The phase composition analysis indicated that the zinc leaching residue mainly consists of super refined flocculent particles including zinc ferrite, sulfate and silicate. The physical structural analysis showed that it has a thermal instability and strong water absorption properties. The results of TCLP indicated that the amounts of Zn and Cd in the leaching solution exceed 40 and 90 times of limit, respectively, which demonstrate that this residue is unstable in weak acidic environment for a short contact time.
文摘As for the leaching-resistant zinc residues, the silver leaching rate can be over 98% through the process of pressurized preoxidation and thiourea leaching. Compared with the method of extracting the silver directly from the leaching-resistant zinc residues, the silver leaching rate is greatly improved. The optimum preoxidation conditions are: particle size range 4060 μm, oxygen partial pressure 10 6 Pa, temperature 8090 ℃, pH=1.0, and leaching time 5 h. After pretreatment, the time of thiourea leaching silver is shortened to 1.5 h, and the thiourea consumption is reduced greatly. The oxidation mechanism and the thiourea leaching kinetics were also explored.
基金Project(2012FJ1010)supported by the Key Project of Science and Technology of Hunan ProvinceChina+2 种基金Project(51474247)supported by the National Natural Science Foundation of ChinaProject(2012GS430201)supported by the Science and Technology Program for Public WellbeingChina
文摘Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environment. The ZNLR contained approximately 35.99% Zn, 15.93% Fe and 0.26% Cd, and Cd mainly existed as ferrites in the ZNLR in this research. Reductive acid leaching of ZNLR was investigated. The effects of hydrazine sulfate concentration, initial sulfuric acid concentration, temperature, duration and liquid-to-solid ratio on the extraction of Cd, Zn and Fe were examined. The extraction efficiencies of Cd, Zn and Fe reached 90.81%, 95.83% and 94.19%, respectively when the leaching parameters were fixed as follows: hydrazine sulfate concentration, 33.3 g/L; sulfuric acid concentration, 80 g/L; temperature, 95 °C; duration of leaching, 120 min; liquid-to-solid ratio, 10 m L/g and agitation, 400 r/min. XRD and SEM-EDS analyses of the leaching residue confirmed that lead sulfate(Pb SO4) and hydrazinium zinc sulfate((N2H5)2Zn(SO4)2) were the main phases remaining in the reductive leaching residue.
文摘The feasibility of leaching and recovery of zinc from zinc leaching residue (ZLR) based on a membrane filter press (MFP) was investigated. Experimental results show that zinc calcines with particle sizes of less than 106 μm and chambers of widths of 30 mm are appropriate for establishing uniform filter cakes to obtain acceptable leaching and recovery results. The leaching of zinc from ZLR performed via washing at 90 to 96 ℃ for 90 min with spent electrolyte using a MFP results in a zinc extraction rate of 97%, and almost all of the zinc leached are recovered after water washing with MFP, thereby avoiding any loss in the ZLR. Compared with the traditional hot concentrated acid leaching process, the process based on MFP as a leaching reactor is able not only to ensure a high extraction rate but also to reduce the leaching time. Moreover, the thickening, pulping, second leaching, washing, filtering and pressing could be integrated and realized using a single MFP.
基金financially supported by the National Natural Science Foundation of China (Nos. U1302274 and 51674026)the Fundamental Research Funds for the Central Universities (No. 230201606500078)the Yunnan Technical Innovation and Personnel Training Program
文摘Huge quantities of zinc leaching residues(ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals(mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L^(-1), a liquid/solid ratio of 4:1(m L/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L^(-1), a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.
基金supported by the National High Technology Research and Development Program of China(No.2009AA06Z106)Yunnan Provincial Science and Technology Department of China(No.2011GA004)
文摘This article investigated molybdenum recovery from oxygen pressure water leaching residue of Ni-Mo ore using alkaline leaching, followed by chemical treatment of leach liquor. Parameters affecting Mo leaching rate, such as sodium hydroxide concentration, reaction time, a liquid- to-solid ratio, and temperature for the preliminary alkaline leaching were experimentally determined. The results showed that more than 88 % of molybdenum was leached under the optimum conditions (2.5 ml.g-1 NaOH, 80 ℃, a liquid to solid ratio 3 ml.g-1, and reaction time 3 h). After the purification of leach liquor, a CaMoO4 product of 99.2 % purity could be obtained by CaCla precipitation method. The whole Mo recovery reached about 82.7 %.
基金supported by the funding project of Xinjiang high technology research and development program(No.201515108)funding project for Xinjiang autonomous region's strategic emerging industries(No.201552)
文摘To provide a theoretical basis for a suitable process to extract gold from refractory gold concentrates, process mineralogy on the acid leaching residue of gold calcine was studied by chemical composition, X-ray diffraction, scanning electron microscopy-energy spectrum, and mineral dissociation analysis. The results showed that the acid leaching residue contained Au 68.22 g/t, Ag 92.71 g/t, Fe 0.44%, As 0.10%, and S 0.55%. Gold and silver minerals existed as native gold, argentite, and proustite. Quartz, the main gangue mineral, accounted for 78.33 wt/%. The dissociation degree analysis showed that the proportions of monomer and exposed gold in acid leaching residue were 96.66 wt%. The cyanidation results showed that the cyanide gold leaching rate of acid leaching residues was close to 100 wt%. However, the maximum cyanide gold leaching rate of gold calcine was only 85.31 wt%. This suggests that acid leaching can increase the gold dissolution rate in the cyanide process.
基金Project(2014FJ1011)supported by Key Project of Science and Technology of Hunan Province,ChinaProject(201509050)supported by Program for Special Scientific Research Projects of National Public Welfare Industry
文摘Zinc leaching residue(ZLR),produced from traditional zinc hydrometallurgy process,is not only a hazardous waste but also a potential valuable solid.The combination of sulfate roasting and water leaching was employed to recover the valuable metals from ZLR.The ZLR was initially roasted with ferric sulfate at640°C for1h with ferric sulfate/zinc ferrite mole ratio of1.2.In this process,the valuable metals were efficiently transformed into water soluble sulfate,while iron remains as ferric oxide.Thereafter,water leaching was conducted to extract the valuable metals sulfate for recovery.The recovery rates of zinc,manganese,copper,cadmium and iron were92.4%,93.3%,99.3%,91.4%and1.1%,respectively.A leaching toxicity test for ZLR was performed after water leaching.The results indicated that the final residue was effectively detoxified and all of the heavy metal leaching concentrations were under the allowable limit.
基金Project(2018YFC1900305)supported by the National Key R&D Program of ChinaProject(51825403)supported by the National Science Foundation for Distinguished Young Scholars,China+1 种基金Projects(51634010,51474247,51904354)supported by the National Natural Science Foundation of ChinaProject(2019SK2291)supported by the Key Research and Development Program of Hunan Province,China。
文摘Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study proposed a new process involving sulfidation roasting, magnetic separation and flotation to recover zinc and iron in ZLR. Through sulfidation roasting of ZLR with pyrite, zinc and iron were converted into ZnS and Fe3 O4. The effects of pyrite dosage, roasting temperature and roasting time on the sulfidation of zinc in ZLR were investigated. The results showed that the sulfidation percentage of zinc reached 91.8% under the optimum condition. Besides, it was found that ball-milling was favorable for the separation and recovery of zinc and iron in sulfidation products. After ball-milling pretreatment, iron and zinc were enriched from sulfidation products by magnetic separation and flotation. The grade of iron in magnetic concentrates was 52.3% and the grade of zinc in flotation concentrates was 31.7%, which realized the recovery of resources.
基金Project(41371475)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.
基金the Research Fund for the Doctoral Program of Higher Education, China (No. 20110042120014)the Project Supported by National Natural Science Foundation of China (Nos. 51204036 and 51234009)the National Basic Research of Program of China (No. 2014CB643405)
文摘A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaC12 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were inves- tigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaC12 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching tempera- ture of 80℃, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.
基金Projects(41877511,41842020) supported by the National Natural Science Foundation of ChinaProject(201509048) supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline anion(HCO3^-,CO3^2-,OH^-,AlO2^-)concentration reduced from 38.89 to 25.50 mmol/L,leaching rate of soluble sodium was 80.86%with ammonium chloride addition of 0.75%,liquid/solid(L/S)ratio of 3(mL/g),temperature of 30°C and reaction time of 18 h;L/S ratio was the main factor affecting the removal of alkaline anion and the leaching of sodium.Furthermore,ammonium chloride promoted the dissolution of diaspore and changed the micro/morphological characteristics with the increase of massive structure.The findings of this work will contribute to achieve soil-formation of bauxite residue.
基金Project(41371475)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue,a highly saline solid waste produced from digestion of bauxite for alumina production,is hazardous to the environment and restricts vegetation establishment in bauxite residue disposal areas.A novel water leaching process proposed here was used to investigate the dynamic migration and vertical distribution of saline ions in bauxite residue.The results show that water leaching significantly reduced the salinity of bauxite residue,leaching both saline cations Na+,K+,Ca2+and anions CO32-,SO42-,HCO3-.Na+and K+migrated from 40-50 to 20-30 cm of the column,presenting a high migration capacity.The migration capacity of Ca2+was lower and accumulated at 30-40 cm of the column.CO32-initially distributed at 20-30 cm of the column,subsequently transported to 30-40 cm of the column,and finally returned to 20-30 cm of the column along with evaporation.SO42-was originally distributed at 40-50 cm,but finally migrated to 20-30 cm of the column.Nevertheless,HCO3-remained at the bottom of the column,and its migratory was less affected by evaporation.