With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV sy...With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV system is controlled to keep grid connected, as well as inject reactive current to grid when fault occurs. The mathematical model of PV system is established and the fault characteristic is studied with respect to the control strategy. By analyzing the effect of reactive power supplied by the PV system to the point of common coupling (PCC) voltage, this paper proposes an adaptive voltage support control strategy to enhance the fault ride-through capability of PV system. The control strategy fully utilizes the PV system’s capability of voltage support and takes the safety of equipment into account as well. At last, the proposed control strategy is verified by simulation.展开更多
传统高电压穿越(high voltage ride through,HVRT)过程的实现主要是针对转子过电流或直流母线过电压的单一场景设计控制策略,容易产生控制盲区。为此,提出一种基于转子电流反馈与功率不平衡响应的高电压穿越控制策略。为抑制转子过电流...传统高电压穿越(high voltage ride through,HVRT)过程的实现主要是针对转子过电流或直流母线过电压的单一场景设计控制策略,容易产生控制盲区。为此,提出一种基于转子电流反馈与功率不平衡响应的高电压穿越控制策略。为抑制转子过电流,在检测定子电压和电流的基础上,通过分解定子磁链获得转子电流直流分量参考值,将转子回路实际电流作为反馈量抵消转子回路中的直流电流分量。另外,考虑到直流母线过电压容易导致高电压穿越失败,采用功率平衡关系式推导稳定直流电压所需的控制电流参考值。若控制电流超过变流器允许工作电流范围,则考虑将输出电流限值作为控制电流参考值以最大限度利用变流器控制能力,降低直流母线过电压。仿真结果表明:所提出的控制策略能在降低过电流以及直流母线过电压的同时确保良好的动态响应性能。展开更多
The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT ope...The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT operation of the wind farms, three methods were discussed. First, the rotor short current of doubly-fed induction generator (DFIG) was limited by introducing a rotor side protection circuit. Second, the voltage of DC bus was limited by a DC energy absorb circuit. Third, STATCOM was used to increase the low level voltages of the wind farm. Simulation under MATLAB was studied and the corresponding results were given and discussed. The methods proposed in this paper can limit the rotor short current and the DC voltage of the DFIG WT to some degree, but the voltage support to the power system during the fault largely depend on the installation place of STATCOM.展开更多
In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) ...In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.展开更多
Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive p...Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive power injecting into a grid but also implements other importance duties as well. In this study, negative-sequence current injection has been fulfilled in three-phase power electronic interface for two important duties besides injecting reference power into utility grids. The first one is for islanding detection, and the other one is to enhance unbalance-fault ride-through capability of dispersed generation. This paper introduces a mechanism of negative-sequence injection based on controlling two separate coordinates of dq-control and explains the effect of negative-sequence injection in limiting the unbalanced currents generated from a dispersed generation. Using adaptive notch filter as a signal processing unit for the three-phase system, negative-sequence components are observed. The performance of entire control system is evaluated by time domain simulations, PSCAD/EMTDC (power systems computer aided design/electromagnetic transients including DC).展开更多
Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full powe...Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.展开更多
文摘With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV system is controlled to keep grid connected, as well as inject reactive current to grid when fault occurs. The mathematical model of PV system is established and the fault characteristic is studied with respect to the control strategy. By analyzing the effect of reactive power supplied by the PV system to the point of common coupling (PCC) voltage, this paper proposes an adaptive voltage support control strategy to enhance the fault ride-through capability of PV system. The control strategy fully utilizes the PV system’s capability of voltage support and takes the safety of equipment into account as well. At last, the proposed control strategy is verified by simulation.
文摘传统高电压穿越(high voltage ride through,HVRT)过程的实现主要是针对转子过电流或直流母线过电压的单一场景设计控制策略,容易产生控制盲区。为此,提出一种基于转子电流反馈与功率不平衡响应的高电压穿越控制策略。为抑制转子过电流,在检测定子电压和电流的基础上,通过分解定子磁链获得转子电流直流分量参考值,将转子回路实际电流作为反馈量抵消转子回路中的直流电流分量。另外,考虑到直流母线过电压容易导致高电压穿越失败,采用功率平衡关系式推导稳定直流电压所需的控制电流参考值。若控制电流超过变流器允许工作电流范围,则考虑将输出电流限值作为控制电流参考值以最大限度利用变流器控制能力,降低直流母线过电压。仿真结果表明:所提出的控制策略能在降低过电流以及直流母线过电压的同时确保良好的动态响应性能。
文摘The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT operation of the wind farms, three methods were discussed. First, the rotor short current of doubly-fed induction generator (DFIG) was limited by introducing a rotor side protection circuit. Second, the voltage of DC bus was limited by a DC energy absorb circuit. Third, STATCOM was used to increase the low level voltages of the wind farm. Simulation under MATLAB was studied and the corresponding results were given and discussed. The methods proposed in this paper can limit the rotor short current and the DC voltage of the DFIG WT to some degree, but the voltage support to the power system during the fault largely depend on the installation place of STATCOM.
文摘In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.
文摘Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive power injecting into a grid but also implements other importance duties as well. In this study, negative-sequence current injection has been fulfilled in three-phase power electronic interface for two important duties besides injecting reference power into utility grids. The first one is for islanding detection, and the other one is to enhance unbalance-fault ride-through capability of dispersed generation. This paper introduces a mechanism of negative-sequence injection based on controlling two separate coordinates of dq-control and explains the effect of negative-sequence injection in limiting the unbalanced currents generated from a dispersed generation. Using adaptive notch filter as a signal processing unit for the three-phase system, negative-sequence components are observed. The performance of entire control system is evaluated by time domain simulations, PSCAD/EMTDC (power systems computer aided design/electromagnetic transients including DC).
文摘Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.