期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rider Optimization Algorithm Based Optimal Cloud Server Selection in E-Learning
1
作者 R.Soundhara Raja Pandian C.Christopher Columbus 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1749-1762,共14页
Currently,e-learning is one of the most prevalent educational methods because of its need in today’s world.Virtual classrooms and web-based learning are becoming the new method of teaching remotely.The students exper... Currently,e-learning is one of the most prevalent educational methods because of its need in today’s world.Virtual classrooms and web-based learning are becoming the new method of teaching remotely.The students experience a lack of access to resources commonly the educational material.In remote loca-tions,educational institutions face significant challenges in accessing various web-based materials due to bandwidth and network infrastructure limitations.The objective of this study is to demonstrate an optimization and queueing tech-nique for allocating optimal servers and slots for users to access cloud-based e-learning applications.The proposed method provides the optimization and queue-ing algorithm for multi-server and multi-city constraints and considers where to locate the best servers.For optimal server selection,the Rider Optimization Algo-rithm(ROA)is utilized.A performance analysis based on time,memory and delay was carried out for the proposed methodology in comparison with the exist-ing techniques.The proposed Rider Optimization Algorithm is compared to Par-ticle Swarm Optimization(PSO),Genetic Algorithm(GA)and Firefly Algorithm(FFA),the proposed method is more suitable and effective because the other three algorithms drop in local optima and are only suitable for small numbers of user requests.Thus the proposed method outweighs the conventional techniques by its enhanced performance over them. 展开更多
关键词 optimization QUEUING slot selection server selection rider optimization algorithm
下载PDF
Novel Block Chain Technique for Data Privacy and Access Anonymity in Smart Healthcare
2
作者 J.Priya C.Palanisamy 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期243-259,共17页
The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applicat... The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applications have beenextensively used. For instance, Healthcare applications execute computations utilizing the user’s private data stored on cloud servers. However, the main obstaclesfaced by the extensive acceptance and usage of these emerging technologies aresecurity and privacy. Moreover, many healthcare data management system applications have emerged, offering solutions for distinct circumstances. But still, theexisting system has issues with specific security issues, privacy-preserving rate,information loss, etc. Hence, the overall system performance is reduced significantly. A unique blockchain-based technique is proposed to improve anonymityin terms of data access and data privacy to overcome the above-mentioned issues.Initially, the registration phase is done for the device and the user. After that, theGeo-Location and IP Address values collected during registration are convertedinto Hash values using Adler 32 hashing algorithm, and the private and publickeys are generated using the key generation centre. Then the authentication is performed through login. The user then submits a request to the blockchain server,which redirects the request to the associated IoT device in order to obtain thesensed IoT data. The detected data is anonymized in the device and stored inthe cloud server using the Linear Scaling based Rider Optimization algorithmwith integrated KL Anonymity (LSR-KLA) approach. After that, the Time-stamp-based Public and Private Key Schnorr Signature (TSPP-SS) mechanismis used to permit the authorized user to access the data, and the blockchain servertracks the entire transaction. The experimental findings showed that the proposedLSR-KLA and TSPP-SS technique provides better performance in terms of higherprivacy-preserving rate, lower information loss, execution time, and Central Processing Unit (CPU) usage than the existing techniques. Thus, the proposed method allows for better data privacy in the smart healthcare network. 展开更多
关键词 Adler 32 hashing algorithm linear scaling based rider optimization algorithm with integrated KL anonymity(LSR-KLA) timestamp-based public and private key schnorr signature(TSPP-SS) blockchain internet of things(IoT) healthcare
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部