Based on contour tillage of wide ridge and furrow covering and agro-forestry, this paper sets up a compound ridge culture mode in hillside orchards and introduces a long-term observation to the mode's effects on ecol...Based on contour tillage of wide ridge and furrow covering and agro-forestry, this paper sets up a compound ridge culture mode in hillside orchards and introduces a long-term observation to the mode's effects on ecological benefits of water and soil conservation. A five-year study shows that compound ridge culture in hillside orchards is effective in water and soil conservation, especially in reducing soil erosion. Compared with the traditional management modes of orchards, compound ridge culture has reduced runoff amount by 41.96%-57.96%, soil erosion amount by 55.47%-67.75%. Compound ridge culture also brings an obvious reduction of soil nutrient loss and of non-point source pollution, which is of great importance for keeping and increasing the productivity of hillside orchards in the Three Gorge Reservoir Area.展开更多
The variety "Aifeng" was used as experimental material,and the stem diameter,plant height,the number of leaves and yield of P. vulgaris under three ways of ridge culture (bedding,high ridge and M ridge) were...The variety "Aifeng" was used as experimental material,and the stem diameter,plant height,the number of leaves and yield of P. vulgaris under three ways of ridge culture (bedding,high ridge and M ridge) were observed and detected to study the effects of different ridge cultures on the growth and yield. The results showed that the stem diameter,plant height,the number of leaves and yield under M ridge culture were higher than that of bedding and high ridge.展开更多
Ridge culture is a special conservation tillage method, but the long-term influence of this tillage system on soil aggregate-size stability in paddy fields is largely unknown in southwest of China. The paper is to eva...Ridge culture is a special conservation tillage method, but the long-term influence of this tillage system on soil aggregate-size stability in paddy fields is largely unknown in southwest of China. The paper is to evaluate soil aggregate stability and to determine the relationship between soil organic carbon (SOC) and soil aggregate stability. Soil samples at 0 cm-20 cm layer were adopted from a long-term (16 a) field experiment including conventional tillage: plain culture, summer rice crop and winter upland crop under drained conditions (PUR-r); and conservation tillage: ridge culture without tillage, summer rice and winter fallow with floodwater layer annually (NTR-f), winter upland crop under drained conditions (NTR-r), and wide ridge culture without tillage, summer rice crop and winter upland crop under conditions (NTRw-r), respectively. Different pretreatments, such as slaking in fast wetting, wetting and subsequent slaking, were applied to simulate the breakdown mechanisms of aggregates in paddy soil. The results show that soil particles contents were mainly consisted of silt (0.050 mm to 1.000 mm) in fraction of 42.9% to 51.2%, sand (0.050 mm to 0.001 mm) in fraction of 28.0% to 31.8%, and clay (<0.001 mm) in fraction of 17.9% to 25.4%. The amount of aggregate-size was greatly observed in fraction of 2.000 mm-6.720 mm under ridge culture in paddy soil (more than 50$) under slaking and wetting pretreatment. The proportion of soil macro-aggregates (>0.250 mm) in conservation tillage was greatly higher than that in conventional tillage under subsequent fast slaking treatment. Minimal differences of aggregate stability between slaking in fast wetting and wetting were observed, while significant differences were found between ridge culture and plain culture. The aggregate stability under slaking treatment ranked in the order of NTR-r>NTRw-r> NTR-f > PUR-r, while under wetting was NTRw-r > NTR-r > NTR-f >PUR-r. There was a positive correlation between the aggregate stability and SOC concentration under wetting, and a low correlation was observed under slaking pretreatment. Soil exposure with tillage and lack of rice/rape-seed stubble inputs caused declines in aggregation and organic carbon, both of which make soil susceptible to water erosion. Adoption of ridge culture with no-tillage integrated with crop rotation and stubble mulch significantly altered soil organic concentration. It was a valuable conservation practice for soil aggregation and soil organic carbon sequestration on paddy soil.展开更多
A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the...A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.展开更多
基金the Western Action Project of Chinese Acad-emy of Sciences(KZCX2-XB2-07)the Item of State Council Three Gorge Project Construction Committee Executive Office(SX2001-021).
文摘Based on contour tillage of wide ridge and furrow covering and agro-forestry, this paper sets up a compound ridge culture mode in hillside orchards and introduces a long-term observation to the mode's effects on ecological benefits of water and soil conservation. A five-year study shows that compound ridge culture in hillside orchards is effective in water and soil conservation, especially in reducing soil erosion. Compared with the traditional management modes of orchards, compound ridge culture has reduced runoff amount by 41.96%-57.96%, soil erosion amount by 55.47%-67.75%. Compound ridge culture also brings an obvious reduction of soil nutrient loss and of non-point source pollution, which is of great importance for keeping and increasing the productivity of hillside orchards in the Three Gorge Reservoir Area.
基金Supported by Water-saving and Efficient Model Research of Dry Land Vegetable Planting (2007BAD88B03-3-2)
文摘The variety "Aifeng" was used as experimental material,and the stem diameter,plant height,the number of leaves and yield of P. vulgaris under three ways of ridge culture (bedding,high ridge and M ridge) were observed and detected to study the effects of different ridge cultures on the growth and yield. The results showed that the stem diameter,plant height,the number of leaves and yield under M ridge culture were higher than that of bedding and high ridge.
基金Funded by the Key Projects of National Science & Technology Pillar Program (No.2006BAD05B0-02) Sichuan Educational Committee for Youths (No.09ZB049)
文摘Ridge culture is a special conservation tillage method, but the long-term influence of this tillage system on soil aggregate-size stability in paddy fields is largely unknown in southwest of China. The paper is to evaluate soil aggregate stability and to determine the relationship between soil organic carbon (SOC) and soil aggregate stability. Soil samples at 0 cm-20 cm layer were adopted from a long-term (16 a) field experiment including conventional tillage: plain culture, summer rice crop and winter upland crop under drained conditions (PUR-r); and conservation tillage: ridge culture without tillage, summer rice and winter fallow with floodwater layer annually (NTR-f), winter upland crop under drained conditions (NTR-r), and wide ridge culture without tillage, summer rice crop and winter upland crop under conditions (NTRw-r), respectively. Different pretreatments, such as slaking in fast wetting, wetting and subsequent slaking, were applied to simulate the breakdown mechanisms of aggregates in paddy soil. The results show that soil particles contents were mainly consisted of silt (0.050 mm to 1.000 mm) in fraction of 42.9% to 51.2%, sand (0.050 mm to 0.001 mm) in fraction of 28.0% to 31.8%, and clay (<0.001 mm) in fraction of 17.9% to 25.4%. The amount of aggregate-size was greatly observed in fraction of 2.000 mm-6.720 mm under ridge culture in paddy soil (more than 50$) under slaking and wetting pretreatment. The proportion of soil macro-aggregates (>0.250 mm) in conservation tillage was greatly higher than that in conventional tillage under subsequent fast slaking treatment. Minimal differences of aggregate stability between slaking in fast wetting and wetting were observed, while significant differences were found between ridge culture and plain culture. The aggregate stability under slaking treatment ranked in the order of NTR-r>NTRw-r> NTR-f > PUR-r, while under wetting was NTRw-r > NTR-r > NTR-f >PUR-r. There was a positive correlation between the aggregate stability and SOC concentration under wetting, and a low correlation was observed under slaking pretreatment. Soil exposure with tillage and lack of rice/rape-seed stubble inputs caused declines in aggregation and organic carbon, both of which make soil susceptible to water erosion. Adoption of ridge culture with no-tillage integrated with crop rotation and stubble mulch significantly altered soil organic concentration. It was a valuable conservation practice for soil aggregation and soil organic carbon sequestration on paddy soil.
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40231016)
文摘A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.