The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(...The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method.展开更多
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ...In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters.展开更多
In view of the difficulty in calculating the atomic structure parameters of high-Z elements,the Hartree–Fock with relativistic corrections(HFR)theory in combination with the ridge regression(RR)algorithm rather than ...In view of the difficulty in calculating the atomic structure parameters of high-Z elements,the Hartree–Fock with relativistic corrections(HFR)theory in combination with the ridge regression(RR)algorithm rather than the Cowan code’s least squares fitting(LSF)method is proposed and applied.By analyzing the energy level structure parameters of the HFR theory and using the fitting experimental energy level extrapolation method,some excited state energy levels of the Yb I(Z=70)atom including the 4f open shell are calculated.The advantages of the ridge regression algorithm are demonstrated by comparing it with Cowan code’s LSF results.In addition,the results obtained by the new method are compared with the experimental results and other theoretical results to demonstrate the reliability and accuracy of our approach.展开更多
A novel pilot-aided ridge regression (RR) channel estimation for SC-FDE system on time-varying frequency selective fading channel is derived. Previous least square (LS) channel estimation, which does not consider and ...A novel pilot-aided ridge regression (RR) channel estimation for SC-FDE system on time-varying frequency selective fading channel is derived. Previous least square (LS) channel estimation, which does not consider and utilize the influence of noise, has poor performance when the observed signal is corrupted abnormally by noise. In order to overcome the inherent disadvantage of LS estimation, the proposed RR estimation uses the influence of noise to get better performance. The performance of this new estimator is examined. The numerical results are presented to show that the new estimation improves the accuracy of estimation especially in low channel signal-to-noise ratio (CSNR) level and outperforms LS estimation. In addition, the proposed RR estimation can get the gains of about 1dB compared with LS estimation.展开更多
In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection m...In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection method called recursive feature elimination based on ridge regression(Ridge-RFE)for the original spectral data is recommended to make full use of the valid information of spectra.In the Ridge-RFE method,the absolute value of the ridge regression coefficient was used as a criterion to screen spectral characteristic,the feature with the absolute value of minimum weight in the input subset features was removed by recursive feature elimination(RFE),and the selected features were used as inputs of the partial least squares regression(PLS)model.The Ridge-RFE method based PLS model was used to measure the Fe,Si,Mg,Cu,Zn and Mn for 51 aluminum alloy samples,and the results showed that the root mean square error of prediction decreased greatly compared to the PLS model with full spectrum as input.The overall results demonstrate that the Ridge-RFE method is more efficient to extract the redundant features,make PLS model for better quantitative analysis results and improve model generalization ability.展开更多
Ridge regression spectrophotometry(LHG)is used for thesimultaneous determination of five components(acetaminophen,p-aminophenol, caffeine, chlorphenamine maleate and guaifenesin)incough syr- up. The computer program o...Ridge regression spectrophotometry(LHG)is used for thesimultaneous determination of five components(acetaminophen,p-aminophenol, caffeine, chlorphenamine maleate and guaifenesin)incough syr- up. The computer program of LHG is based on VB language.The difficulties in overlapping of absorption spectrums of fivecompounds are overcome by this procedure. The experimental resultsshow that the recovery of each component is in the range from97.9/100 to 103.3/100 and each component obtains satisfactory resultswithout any pre-separation.展开更多
The use of [1] Box-Cox power transformation in regression analysis is now common;in the last two decades there has been emphasis on diagnostics methods for Box-Cox power transformation, much of which has involved dele...The use of [1] Box-Cox power transformation in regression analysis is now common;in the last two decades there has been emphasis on diagnostics methods for Box-Cox power transformation, much of which has involved deletion of influential data cases. The pioneer work of [2] studied local influence on constant variance perturbation in the Box-Cox unbiased regression linear mode. Tsai and Wu [3] analyzed local influence method of [2] to assess the effect of the case-weights perturbation on the transformation-power estimator in the Box-Cox unbiased regression linear model. Many authors noted that the influential observations on the biased estimators are different from the unbiased estimators. In this paper I describe a diagnostic method for assessing the local influence on the constant variance perturbation on the transformation in the Box-Cox biased ridge regression linear model. Two real macroeconomic data sets are used to illustrate the methodologies.展开更多
Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS in...Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS influence coefficient method when there are correlation planes in the dynamic balancing. It also presencd the new ridge regression method for solving correction masses according to the Tikhonov regularization theory, and described the reason why the ridge regression can eliminate the disadvantage of the LS method. Applying this new method to dynamic balancing of gas turbine, it is found that this method is superior to the LS method when influence coefficient matrix is ill-conditioned,the minimal correction masses and residual vibration are obtained in the dynamic balancing of rotors.展开更多
At present,the prevalence of diabetes is increasing because the human body cannot metabolize the glucose level.Accurate prediction of diabetes patients is an important research area.Many researchers have proposed tech...At present,the prevalence of diabetes is increasing because the human body cannot metabolize the glucose level.Accurate prediction of diabetes patients is an important research area.Many researchers have proposed techniques to predict this disease through data mining and machine learning methods.In prediction,feature selection is a key concept in preprocessing.Thus,the features that are relevant to the disease are used for prediction.This condition improves the prediction accuracy.Selecting the right features in the whole feature set is a complicated process,and many researchers are concentrating on it to produce a predictive model with high accuracy.In this work,a wrapper-based feature selection method called recursive feature elimination is combined with ridge regression(L2)to form a hybrid L2 regulated feature selection algorithm for overcoming the overfitting problem of data set.Overfitting is a major problem in feature selection,where the new data are unfit to the model because the training data are small.Ridge regression is mainly used to overcome the overfitting problem.The features are selected by using the proposed feature selection method,and random forest classifier is used to classify the data on the basis of the selected features.This work uses the Pima Indians Diabetes data set,and the evaluated results are compared with the existing algorithms to prove the accuracy of the proposed algorithm.The accuracy of the proposed algorithm in predicting diabetes is 100%,and its area under the curve is 97%.The proposed algorithm outperforms existing algorithms.展开更多
With the development of UAV technology,UAV aerial magnetic survey plays an important role in the airborne geophysical prospecting.In the aeromagnetic survey,the magnetic field interferences generated by the magnetic c...With the development of UAV technology,UAV aerial magnetic survey plays an important role in the airborne geophysical prospecting.In the aeromagnetic survey,the magnetic field interferences generated by the magnetic components on the aircraft greatly affect the accuracy of the survey results.Therefore,it is necessary to use aeromagnetic compensation technology to eliminate the interfering magnetic field.So far,the aeromagnetic compensation methods used are mainly linear regression compensation methods based on the T-L equation.The least square is one of the most commonly used methods to solve multiple linear regressions.However,considering that the correlation between data may lead to instability of the algorithm,we use the ridge regression algorithm to solve the multicollinearity problem in the T-L equation.Subsequently this method is applied to the aeromagnetic survey data,and the standard deviation is selected as the index to evaluate the compensation effect to verify the effectiveness of the method.展开更多
The kernel ridge regression(KRR)method and its extension with odd-even effects(KRRoe)are used to learn the nuclear mass table obtained by the relativistic continuum Hartree-Bogoliubov theory.With respect to the bindin...The kernel ridge regression(KRR)method and its extension with odd-even effects(KRRoe)are used to learn the nuclear mass table obtained by the relativistic continuum Hartree-Bogoliubov theory.With respect to the binding energies of 9035 nuclei,the KRR method achieves a root-mean-square deviation of 0.96 MeV,and the KRRoe method remarkably reduces the deviation to 0.17 MeV.By investigating the shell effects,one-nucleon and twonucleon separation energies,odd-even mass differences,and empirical proton-neutron interactions extracted from the learned binding energies,the ability of the machine learning tool to grasp the known physics is discussed.It is found that the shell effects,evolutions of nucleon separation energies,and empirical proton-neutron interactions are well reproduced by both the KRR and KRRoe methods,although the odd-even mass differences can only be reproduced by the KRRoe method.展开更多
In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived...In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived test is designed for growing p and fixed n where the conventional F-test is no longer appropriate. The asymptotic distribution of the proposed test statistic under the null hypothesis is obtained.展开更多
The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the...The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the method and application of the diagnostic mostly. Firstly, review the estimators of this model. Secondly, show that the case deletion model is equivalent to the mean shift outlier model for diagnostic purpose. Then, some diagnostic statistics are given. At last, example is given to illustrate our results.展开更多
Longitudinal trends of observations can be estimated using the generalized multivariate analysis of variance (GMANOVA) model proposed by [10]. In the present paper, we consider estimating the trends nonparametrically ...Longitudinal trends of observations can be estimated using the generalized multivariate analysis of variance (GMANOVA) model proposed by [10]. In the present paper, we consider estimating the trends nonparametrically using known basis functions. Then, as in nonparametric regression, an overfitting problem occurs. [13] showed that the GMANOVA model is equivalent to the varying coefficient model with non-longitudinal covariates. Hence, as in the case of the ordinary linear regression model, when the number of covariates becomes large, the estimator of the varying coefficient becomes unstable. In the present paper, we avoid the overfitting problem and the instability problem by applying the concept behind penalized smoothing spline regression and multivariate generalized ridge regression. In addition, we propose two criteria to optimize hyper parameters, namely, a smoothing parameter and ridge parameters. Finally, we compare the ordinary least square estimator and the new estimator.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.11875027,11975096).
文摘The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method.
文摘In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters.
基金the Fundamental Research Funds for the Central Universities(Grant No.10822041A2038).
文摘In view of the difficulty in calculating the atomic structure parameters of high-Z elements,the Hartree–Fock with relativistic corrections(HFR)theory in combination with the ridge regression(RR)algorithm rather than the Cowan code’s least squares fitting(LSF)method is proposed and applied.By analyzing the energy level structure parameters of the HFR theory and using the fitting experimental energy level extrapolation method,some excited state energy levels of the Yb I(Z=70)atom including the 4f open shell are calculated.The advantages of the ridge regression algorithm are demonstrated by comparing it with Cowan code’s LSF results.In addition,the results obtained by the new method are compared with the experimental results and other theoretical results to demonstrate the reliability and accuracy of our approach.
基金Sponsored by the National Natural Science Foundation of China & Civil Aviation Administration of China(Grant No.61071104)the Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory(Grant No.ITD-U10006)
文摘A novel pilot-aided ridge regression (RR) channel estimation for SC-FDE system on time-varying frequency selective fading channel is derived. Previous least square (LS) channel estimation, which does not consider and utilize the influence of noise, has poor performance when the observed signal is corrupted abnormally by noise. In order to overcome the inherent disadvantage of LS estimation, the proposed RR estimation uses the influence of noise to get better performance. The performance of this new estimator is examined. The numerical results are presented to show that the new estimation improves the accuracy of estimation especially in low channel signal-to-noise ratio (CSNR) level and outperforms LS estimation. In addition, the proposed RR estimation can get the gains of about 1dB compared with LS estimation.
基金supported by National Key Research and Development Program of China(No.2016YFF0102502)the Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-JSC037)the Youth Innovation Promotion Association,CAS,Liao Ning Revitalization Talents Program(No.XLYC1807110)。
文摘In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection method called recursive feature elimination based on ridge regression(Ridge-RFE)for the original spectral data is recommended to make full use of the valid information of spectra.In the Ridge-RFE method,the absolute value of the ridge regression coefficient was used as a criterion to screen spectral characteristic,the feature with the absolute value of minimum weight in the input subset features was removed by recursive feature elimination(RFE),and the selected features were used as inputs of the partial least squares regression(PLS)model.The Ridge-RFE method based PLS model was used to measure the Fe,Si,Mg,Cu,Zn and Mn for 51 aluminum alloy samples,and the results showed that the root mean square error of prediction decreased greatly compared to the PLS model with full spectrum as input.The overall results demonstrate that the Ridge-RFE method is more efficient to extract the redundant features,make PLS model for better quantitative analysis results and improve model generalization ability.
基金This work was supported by the Science Foundation of the Education Department of Zhejiang Province( 20000064).
文摘Ridge regression spectrophotometry(LHG)is used for thesimultaneous determination of five components(acetaminophen,p-aminophenol, caffeine, chlorphenamine maleate and guaifenesin)incough syr- up. The computer program of LHG is based on VB language.The difficulties in overlapping of absorption spectrums of fivecompounds are overcome by this procedure. The experimental resultsshow that the recovery of each component is in the range from97.9/100 to 103.3/100 and each component obtains satisfactory resultswithout any pre-separation.
文摘The use of [1] Box-Cox power transformation in regression analysis is now common;in the last two decades there has been emphasis on diagnostics methods for Box-Cox power transformation, much of which has involved deletion of influential data cases. The pioneer work of [2] studied local influence on constant variance perturbation in the Box-Cox unbiased regression linear mode. Tsai and Wu [3] analyzed local influence method of [2] to assess the effect of the case-weights perturbation on the transformation-power estimator in the Box-Cox unbiased regression linear model. Many authors noted that the influential observations on the biased estimators are different from the unbiased estimators. In this paper I describe a diagnostic method for assessing the local influence on the constant variance perturbation on the transformation in the Box-Cox biased ridge regression linear model. Two real macroeconomic data sets are used to illustrate the methodologies.
文摘Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS influence coefficient method when there are correlation planes in the dynamic balancing. It also presencd the new ridge regression method for solving correction masses according to the Tikhonov regularization theory, and described the reason why the ridge regression can eliminate the disadvantage of the LS method. Applying this new method to dynamic balancing of gas turbine, it is found that this method is superior to the LS method when influence coefficient matrix is ill-conditioned,the minimal correction masses and residual vibration are obtained in the dynamic balancing of rotors.
文摘At present,the prevalence of diabetes is increasing because the human body cannot metabolize the glucose level.Accurate prediction of diabetes patients is an important research area.Many researchers have proposed techniques to predict this disease through data mining and machine learning methods.In prediction,feature selection is a key concept in preprocessing.Thus,the features that are relevant to the disease are used for prediction.This condition improves the prediction accuracy.Selecting the right features in the whole feature set is a complicated process,and many researchers are concentrating on it to produce a predictive model with high accuracy.In this work,a wrapper-based feature selection method called recursive feature elimination is combined with ridge regression(L2)to form a hybrid L2 regulated feature selection algorithm for overcoming the overfitting problem of data set.Overfitting is a major problem in feature selection,where the new data are unfit to the model because the training data are small.Ridge regression is mainly used to overcome the overfitting problem.The features are selected by using the proposed feature selection method,and random forest classifier is used to classify the data on the basis of the selected features.This work uses the Pima Indians Diabetes data set,and the evaluated results are compared with the existing algorithms to prove the accuracy of the proposed algorithm.The accuracy of the proposed algorithm in predicting diabetes is 100%,and its area under the curve is 97%.The proposed algorithm outperforms existing algorithms.
文摘With the development of UAV technology,UAV aerial magnetic survey plays an important role in the airborne geophysical prospecting.In the aeromagnetic survey,the magnetic field interferences generated by the magnetic components on the aircraft greatly affect the accuracy of the survey results.Therefore,it is necessary to use aeromagnetic compensation technology to eliminate the interfering magnetic field.So far,the aeromagnetic compensation methods used are mainly linear regression compensation methods based on the T-L equation.The least square is one of the most commonly used methods to solve multiple linear regressions.However,considering that the correlation between data may lead to instability of the algorithm,we use the ridge regression algorithm to solve the multicollinearity problem in the T-L equation.Subsequently this method is applied to the aeromagnetic survey data,and the standard deviation is selected as the index to evaluate the compensation effect to verify the effectiveness of the method.
基金Supported by the National Natural Science Foundation of China(11875075,11935003,11975031,12141501,12070131001)the China Postdoctoral Science Foundation under(2021M700256)+1 种基金the State Key Laboratory of Nuclear Physics and Technology,Peking University(NPT2023ZX01,NPT2023KFY02)the President’s Undergraduate Research Fellowship(PURF)of Peking University
文摘The kernel ridge regression(KRR)method and its extension with odd-even effects(KRRoe)are used to learn the nuclear mass table obtained by the relativistic continuum Hartree-Bogoliubov theory.With respect to the binding energies of 9035 nuclei,the KRR method achieves a root-mean-square deviation of 0.96 MeV,and the KRRoe method remarkably reduces the deviation to 0.17 MeV.By investigating the shell effects,one-nucleon and twonucleon separation energies,odd-even mass differences,and empirical proton-neutron interactions extracted from the learned binding energies,the ability of the machine learning tool to grasp the known physics is discussed.It is found that the shell effects,evolutions of nucleon separation energies,and empirical proton-neutron interactions are well reproduced by both the KRR and KRRoe methods,although the odd-even mass differences can only be reproduced by the KRRoe method.
文摘In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived test is designed for growing p and fixed n where the conventional F-test is no longer appropriate. The asymptotic distribution of the proposed test statistic under the null hypothesis is obtained.
文摘The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the method and application of the diagnostic mostly. Firstly, review the estimators of this model. Secondly, show that the case deletion model is equivalent to the mean shift outlier model for diagnostic purpose. Then, some diagnostic statistics are given. At last, example is given to illustrate our results.
文摘Longitudinal trends of observations can be estimated using the generalized multivariate analysis of variance (GMANOVA) model proposed by [10]. In the present paper, we consider estimating the trends nonparametrically using known basis functions. Then, as in nonparametric regression, an overfitting problem occurs. [13] showed that the GMANOVA model is equivalent to the varying coefficient model with non-longitudinal covariates. Hence, as in the case of the ordinary linear regression model, when the number of covariates becomes large, the estimator of the varying coefficient becomes unstable. In the present paper, we avoid the overfitting problem and the instability problem by applying the concept behind penalized smoothing spline regression and multivariate generalized ridge regression. In addition, we propose two criteria to optimize hyper parameters, namely, a smoothing parameter and ridge parameters. Finally, we compare the ordinary least square estimator and the new estimator.