Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont...Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.展开更多
Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages,...Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed.展开更多
[Objective] The aim was to provide scientific reference for the production of silage maize in correlated regions of Tibet.[Method] Effects of film mulching on the growth period,growth traits and yield of silage maize ...[Objective] The aim was to provide scientific reference for the production of silage maize in correlated regions of Tibet.[Method] Effects of film mulching on the growth period,growth traits and yield of silage maize and weed were analyzed.[Result] Under the treatment of film mulching,the growth period of silage maize could be advanced for 7-16 d; the plant length,stem diameter and leaf area were increased; and the grain output was increased by 75.9%.According to the market price of silage maize in 2008,22 500 Yuan/hm^2 was increased.There were 13 kinds of weeds in silage maize field,which belonged to 13 genera,8 families.Among them,6 kinds of weeds belonged to Gramineae,among which Echinochloa crusgalli and Setaria viridis were dominated in the weed communities.Plantago depressa,Eragrostis pilosa and Malva verticillata var.chinensis could be totally controlled by the film mulching; meanwhile the others could be also controlled in a certain degree except Echinochloa crusgalli.[Conclusion] The plastic mulching planting is worth popularizing for the developing of animal husbandry and the incoming of the local farmers in Tibet.展开更多
Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of ...Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of sweet potato. The results showed that plastic filming mulching increased soil temperature. Considering the soil temperature-increasing effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. However, with the deepening of soil layer, the warming effect of plastic film mulching was weakened. Black or white plastic film mulching was conducive to low T/R value, especially in the early growth stage of sweet potato. Plastic film mulching significantly improved the storage root yield of sweet potato. In terms of yield-improving effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. The storage root num- ber per plant showed a downward trend, but the weight of single storage root was increased.展开更多
[Objective] The effects of different plastic films mulching on soil temperature and moisture, and growth and yield of sugarcane were discussed in order to provide references for using different plastic film in sugarca...[Objective] The effects of different plastic films mulching on soil temperature and moisture, and growth and yield of sugarcane were discussed in order to provide references for using different plastic film in sugarcane pro-duction. [Method]Four kinds of plastic films viz., normal colorless transparent plastic film, milky photodegradation weeding plastic film, black plastic film and gray-black plastic film were used in sugarcane cultivation by using no film mulching as the control. Soil temperature and moisture were measured during plastic film mulching period, and sugarcane agronomic traits such as emergence rate, tillering rate, plant hight, stalk diameter and effective stalk number were investigated during growth period, the cane yield and economic benefits were calculated during harvest period. [Result] The results showed that plastic film mulching could significantly increase soil temperature and moisture. Com-pared with the control, soil temperature was increased by 0.3-0.8 ℃ in three plastic films mulching treatment except for gray-black plastic film mulching. The soil moisture of all mulching treatments was 10.1%-17.4% higher than the control. Furthermore, the seedling emergence rate, tillering rate, effective stalk number and cane yield also could be improved using plastic film mulching,which were increased by 0.8%-9.9%, 20.6%-34.9%, 5190-10980 stalks/hm^2and6.4%-14.9% as compared to the control,while plant height and stalk diameter were found to be no significant effect by plastic film mulching. The results of benefit analysis indicated that, milky photodegradation weeding film mulching had the highest economic benefit, the second were normal colorless transparent plastic film mulching and black plastic film mulching, which were 5 987.2, 1 876.5 and 1 813.5 Yuan/hm^2 higher than the control. The gray-black film mulching treatment had poor benefit.[Conclusion] The milky photodegradation weeding plastic film could be vigorously extended in sugarcane production. Normal colorless transparent plastic film and black plastic film could be ex-tended gradually as a new kind of plastic film. The grayblack film should not be used for its higher cost and more thickness.展开更多
In order to solve the problem that dry-land foxtail millet production completely relies on rainwater with low instable yield and tedious cultivation, Millet Research Institute of Hebei Academy of Agriculture and Fores...In order to solve the problem that dry-land foxtail millet production completely relies on rainwater with low instable yield and tedious cultivation, Millet Research Institute of Hebei Academy of Agriculture and Forestry Sciences integrated a light simplified production technique integrating film mulching, hole sowing and fertilization with mechanized production, forming the light simplified foxtail millet production technique adopting film mulching and hole sowing. This study introduced the light simplified foxtail millet production technique adopting film mulching and hole sowing, including main links such as preparation before sowing, sowing, attached agricultural machines, field management, harvest and residual film recovery.展开更多
Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic fil...Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic film mulching plus bunch planting had a significant promoting effect on root growth and development and yield of foxtail millet. Compared with the CK, the total root length, total surface area, total root volume and number of. root tips increased by 51.30%, 47.89%, 48.39% and 41.63%, respectively. The yield increased by 48.57%, and there was significant positive correlation between root length, total surface area, total volume, number of root tips and dry matter weight of roots with yield. Developed roots are the main reason for the yield increasing effect of water-permeability plastic film mulching plus bunch planting.展开更多
Pollution of residual plastic film in arable lands is a severe problem in China. In this study, the status of residual film and influential factors were investigated using the methods of farm survey in combination wit...Pollution of residual plastic film in arable lands is a severe problem in China. In this study, the status of residual film and influential factors were investigated using the methods of farm survey in combination with questionnaires and quadrat sampling at a large number of field sites in Xinjiang Uygur Autonomous Region, China. The results showed that the amount of film utilization increased largely and reached to 1.8×10~5 t in 2013. Similarly, the mulching area also substantially increased in recent decades, and reached to 2.7×10~5 ha in the same year. According to the current survey, 60.7% of the sites presented a greater mulch residue than the national film residue standard(75 kg ha^(–1)), and the maximum residual amount reached 502.2 kg ha^(–1) in Turpan, Xinjiang. The film thickness, the mulching time and the crop type all influenced mulch residue. The thickness of the film had significantly negative correlation with the amount of residual film(P0.05), while the mulching years had significantly positive correlation with it(P0.05). The total amount of residual film in Xinjiang was 3.43×105 t in 2011, which accounted for 15.3% of the cumulative dosage of mulching. Among all the crops, the cotton fields had the largest residual amount of mulch film(158.4 kg ha^(–1)), and also the largest contribution(2.6×10~5 tons) to the total amount of residual film in Xinjiang.展开更多
The root quality of sweet potato cultivated during the summer season is poor in northern China;thus,this study was conducted to determine whether root quality could be improved through mulching with plastic film(MPF)....The root quality of sweet potato cultivated during the summer season is poor in northern China;thus,this study was conducted to determine whether root quality could be improved through mulching with plastic film(MPF).The effect of MPF on root starch and its composition,the activity of starch synthesis enzymes,and other quality-related parameters were investigated in two purple flesh sweet potato cultivars,Jishu 18 and Ayamurasaki(Aya).The results indicated that root dry matter,anthocyanin content,adenosine triphosphate(ATP),and starch content were higher in both cultivars under the MPF treatment than those under the control treatment.The root adenosine diphosphate glucose pyrophosphorylase/uridine diphosphate glucose pyrophosphorylase(ADPGPPase/UDPGPPase)activity and adenosine triphosphatease(ATPase)activity were increased using MPF.However,under the MPF treatment,the amylose content,soluble sugar content,and granule-bound synthase(GBSS)activity increased in Jishu 18 but decreased in Aya,and the amylopectin content,protein content,and soluble starch synthase(SSS)activity decreased in Jishu 18 but increased in Aya.Therefore,MPF seems benifit to improve the quality of sweet potato,but the effects of this treatment condition may be dependent on the cultivar.展开更多
Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented...Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.展开更多
To better understand the effects of plastic film mulching on soil greenhouse gases(GHGs) emissions,we compared seasonal and vertical variations of GHG concentrations at seven soil depths in maize(Zea mays L.) fiel...To better understand the effects of plastic film mulching on soil greenhouse gases(GHGs) emissions,we compared seasonal and vertical variations of GHG concentrations at seven soil depths in maize(Zea mays L.) fields at Changwu station in Shaanxi,a semi-humid region,between 2012 and 2013.Gas samples were taken simultaneously every one week from non-mulched(BP) and plastic film-mulched(FM) field plots.The results showed that the concentration of GHGs varied distinctly at the soil-atmosphere interface and in the soil profile during the maize growing season(MS).Both carbon dioxide(CO_2) and nitrous oxide(N_2O) concentrations increased with increasement of soil depth,while the methane(CH_4)concentrations decreased with increasement of soil depth.A strong seasonal variation pattern was found for CO_2 and N_2O concentrations,as compared to an inconspicuous seasonal variation of CH_4 concentrations.The mean CO_2 and N_2O concentrations were higher,but the mean CH_4 concentration in the soil profiles was lower in the FM plots than in the BP plots.The results of this study suggested that plastic film mulching significantly increased the potential emissions of CO_2and N_2O from the soil,and promoted CH_4 absorption by the soil,particularly during the MS.展开更多
Shortages and fluctuations in precipitation are influential limiting factors for the sustainable cultivation of rain-fed winter wheat on the Loess Plateau of China. Plastic film mulching is one of the most effective w...Shortages and fluctuations in precipitation are influential limiting factors for the sustainable cultivation of rain-fed winter wheat on the Loess Plateau of China. Plastic film mulching is one of the most effective water management practices to improve soil moisture, and may be useful in the Loess Plateau for increasing soil water storage. A field experiment was conducted from July 2010 to June 2012 on the Loess Plateau to investigate the effects of mulching time and rates on soil water storage, evapotranspiration (ET), water use efficiency (WUE), and grain yield. Six treatments were conducted: (1) early mulching (starting 30 days after harvest) with whole mulching (EW); (2) early mulching with half mulching (EH); (3) early mulching with no mulching (EN); (4) late mulching (starting 60 days after harvest) with whole mulching (LW); (5) late mulching with half mulching (LH); and (6) late mulching with no mulching (LN). EW increased precipitation storage efficiency during the fallow periods of each season by 18.4 and 17.8%, respectively. EW improved soil water storage from 60 days after harvest to the booting stage and also outperformed LN by 13.8 and 20.9% in each growing season. EW also improved spike number per ha by 13.8 and 20.9% and grain yield by 11.7 and 17.4% during both years compared to LN. However, EW decreased WUE compared with LN. The overall results of this study demonstrated that EW could be a productive and efficient practice to improve wheat yield on the Loess Plateau of China.展开更多
The effects of film mulching of millet on soil water content were studied in semi-arid areas in the Loess Plateau of South Ningxia, China. Different mulching methods including water micro-collecting farming (WF), wa...The effects of film mulching of millet on soil water content were studied in semi-arid areas in the Loess Plateau of South Ningxia, China. Different mulching methods including water micro-collecting farming (WF), water micro-collecting farming in winter fallow (WW), hole seeding on film (HF), hole seeding on film in winter fallow (HW) were compared to determine the effects of mulching methods on soil water collecting and conservation during millet growth periods of 2003-2004, as well as the variation tendency of water content after rainfall, output of millet and water use efficiency (WUE). The experimental results in the two successive years indicated that water micro-collecting farming had a better function of collecting water after rainfall, and side infiltrated water was stored under the ridges and the top layer 0-40 cm soil water changes were great. WF had obvious role in water collection and preservation of soil moisture. It effectively improved the water supply capacity by about 19.05% in the end of growth seasons. The storage of HW and WW increased by 24.9 and 7.1 mm compared with CK, and output of yield were obviously increased. Film mulching increased the yield of millet and enhanced water use efficiency (WUE). During different growth periods, WF exhibited better water storage function with lower water consumption, and demonstrated optimal social and ecological benefits.展开更多
Solving high-temperature plastic mulching film-induced leaf burning in the first week during tobacco cultivation would take much time and effort. In the present study, the growth as well as the leaf sugar and nicotine...Solving high-temperature plastic mulching film-induced leaf burning in the first week during tobacco cultivation would take much time and effort. In the present study, the growth as well as the leaf sugar and nicotine contents of seedlings with or without leaf burning induced by high-temperature plastic mulching film were tested at two independent sites in 2015 and 2016 to identify the influence of leaf burning on seedling growth. The results showed that the growth of seedlings with leaf burning was improved with increased leaf area, leaf number and plant height compared to those without leaf burning, combined with an increased seedling survival rate at two sites in two years. In seedlings with leaf burning, the contents of fructose and glucose increased and peaked at 11:00 and 13:00 in the leaf and root, respectively, with an increased root nicotine content beginning at 13:00, highlighting the signalling role of sugars. Activities of antioxidant enzymes including peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) were all increased in seedlings with leaf burning. More plant biomass was allocated to roots in seedlings with leaf burning with increased root volume compared to control seedlings, which might facilitate the absorption of water and nutrients from the soil. Our findings demonstrate that high-temperature plastic mulching film-induced leaf burning not inhibited but benefited seedling survival and growth, suggesting that the time and labour-consuming manual plucking of burnt leaves can be avoided during tobacco cultivation.展开更多
In order to study current situation of application,recycling and residue pollution of mulching films in Xinjiang,and accurately grasp pollution degree of residue of mulching films,this paper made an empirical analysis...In order to study current situation of application,recycling and residue pollution of mulching films in Xinjiang,and accurately grasp pollution degree of residue of mulching films,this paper made an empirical analysis on residue of mulching films in 31 typical counties and cities in Xinjiang. Results indicate that( i) use of mulching films in Xinjiang is wide and there is great difference in use and residue recycling between cities and counties. Planting area and planting structure jointly influence use of mulching films,and the use of mulching films is significantly correlated with recycling of mulching films,but not correlated with recycling rate of mulching films.( ii) There are significant differences in distribution of residue of mulching films,highest in North Xinjiang and South Xinjiang,followed by East Xinjiang,and the lowest in West Xinjiang.( iii) There are significant differences in distribution of residue of mulching films between different crop fields. Residue of mulching films in cotton field is the key problem of pollution.展开更多
Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in th...Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in the Loess Plateau of China.In this study,we tried to select a suitable ridge-furrow mulching system to improve this situation.A two-year field experiment of summer maize(Zea mays L.)during the growing seasons of 2017 and 2018 was conducted to systematically analyze the effects of flat planting with no film mulching(CK),ridge-furrow with ridges mulching and furrows bare(RFM),and double ridges and furrows full mulching(DRFFM)on soil temperature,soil water storage(SWS),root growth,aboveground dry matter,water use efficiency(WUE),and grain yield.Both RFM and DRFFM significantly increased soil temperature in ridges,while soil temperature in furrows for RFM and DRFFM was similar to that for CK.The largest SWS was observed in DRFFM,followed by RFM and CK,with significant differences among them.SWS was lower in ridges than in furrows for RFM.DRFFM treatment kept soil water in ridges,resulting in higher SWS in ridges than in furrows after a period of no water input.Across the two growing seasons,compared with CK,RFM increased root mass by 10.2%and 19.3%at the jointing and filling stages,respectively,and DRFFM increased root mass by 7.9%at the jointing stage but decreased root mass by 6.0%at the filling stage.Over the two growing seasons,root length at the jointing and filling stages was respectively increased by 75.4%and 58.7%in DRFFM,and 20.6%and 30.2%in RFM.Relative to the jointing stage,the increased proportions of root mass and length at the filling stage were respectively 42.8%and 94.9%in DRFFM,63.2%and 115.1%in CK,and 76.7%and 132.1%in RFM,over the two growing seasons,showing that DRFFM slowed down root growth while RFM promoted root growth at the later growth stages.DRFFM treatment increased root mass and root length in ridges and decreased them in 0-30 cm soil layer,while RFM increased them in 0-30 cm soil layer.Compared with CK,DRFFM decreased aboveground dry matter while RFM increased it.Evapotranspiration was reduced by 9.8%and 7.1%in DRFFM and RFM,respectively,across the two growing seasons.Grain yield was decreased by 14.3%in DRFFM and increased by 13.6%in RFM compared with CK over the two growing seasons.WUE in CK was non-significantly 6.8%higher than that in DRFFM and significantly 22.5%lower than that in RFM across the two growing seasons.Thus,RFM planting pattern is recommended as a viable water-saving option for summer maize in the Loess Plateau of China.展开更多
Six-year Statuma mandarin (Citrus unshiu Marc. Cv. Miyagawa Wase) trees were used as materials to investigate the effects of plastic film mulching on quality and appearance of Statuma mandarin fruit during three perio...Six-year Statuma mandarin (Citrus unshiu Marc. Cv. Miyagawa Wase) trees were used as materials to investigate the effects of plastic film mulching on quality and appearance of Statuma mandarin fruit during three periods of cell division, cell enlargement and mature stages. The results showed that mulching during the cell division and early-mature stages increased total sugar and reduced sugar content of fruit as well as the Vc content, compared to the control. However, the titratable acid content, fruit size, peel weight and single fruit weight were all lower than the control. Film mulching during the cell division phage resulted in higher edible fruit rate, while the fruit shape index was similar to the control. Mulching during the early-mature stage didn’t affect the edible rate of fruit, but caused lower fruit shape index. Compared to the control, film mulching during the cell enlargement period caused lower total and reducing sugar content, titratable acid content and edible rate, while the Vc content was a little bit higher than the control. In addition, the fruit size, peel weight, single fruit weight and fruit shape index were all lower than the control. Mulching during the early-mature period effectively enhanced the content of total and reduced sugar and Vc and decreased the titratable acid content. Hence, it increased fruit quality but had negative effect on fruit appearance.展开更多
Temperature compensatory effect, which quantifies the increase in cumulative air temperature from soil temperature increase caused by mulching, provides an effective method for incorporating soil temperature into crop...Temperature compensatory effect, which quantifies the increase in cumulative air temperature from soil temperature increase caused by mulching, provides an effective method for incorporating soil temperature into crop models. In this study, compensated temperature was integrated into the AquaCrop model to investigate the capability of the compensatory effect to improve assessment of the promotion of maize growth and development by plastic film mulching(PM). A three-year experiment was conducted from2014 to 2016 with two maize varieties(spring and summer) and two mulching conditions(PM and non-mulching(NM)), and the AquaCrop model was employed to reproduce crop growth and yield responses to changes in NM, PM, and compensated PM. A marked difference in soil temperature between NM and PM was observed before 50 days after sowing(DAS) during three growing seasons. During sowing–emergence and emergence–tasseling, the increase in air temperature was proportional to the compensatory coefficient, with spring maize showing a higher compensatory temperature than summer maize. Simulation results for canopy cover(CC) were generally in good agreement with the measurements, whereas predictions of aboveground biomass and grain yield under PM indicated large underestimates from 60 DAS to the end of maturity. Simulations of spring maize biomass and yield showed general increase based on temperature compensation, accompanied by improvement in modeling accuracy, with RMSEs decreasing from 2.5 to 1.6 t ha^(-1)and from 4.1 t to 3.4 t ha^(-1). Improvement in biomass and yield simulation was less pronounced for summer than for spring maize, implying that crops grown during low-temperature periods would benefit more from the compensatory effect. This study demonstrated the effectiveness of the temperature compensatory effect to improve the performance of the AquaCrop model in simulating maize growth under PM practices.展开更多
In order to get a clear picture of distribution characteristics of mulching plastic film residue in cotton fields in the Yellow River Delta and make scientific pollution prevention and control strategies, an investiga...In order to get a clear picture of distribution characteristics of mulching plastic film residue in cotton fields in the Yellow River Delta and make scientific pollution prevention and control strategies, an investigation was conducted in Dongying City. Five typical cotton fields were chosen, and then the number, distri- bution density and area of residual film were measured. The results showed that the residual film was 18. 84-53. 53 kg/hm^2 in cotton fields for more than 20 years, and the differences between fields were larger. The residual density was 225-340 thousand per hectare. There were great differences among residual pieces. The proportion of residual pieces over 25 cm^2 was 94. 1%, that between 100 cm^2 and 500 cm^2 was more than 50. 0%, and that bigger than 500 cm^2 was about 21. 0%. In the Yellow River Delta cotton region, large, thin and difficult to recovery were the main characteristics of mulching plastic film residue, and it had the possibility of mi- grating to deep soil. Thus, the ecological risk of mulching plastic film residue was higher. Key words The Yellow River Delta; Cotton field; Residue of mulching plastic film; Distribution characteristic展开更多
Mulching can effectively maintain soil moisture;color of mulching film affects soil water storage capacity and further promote crop growth to improve grain yield.Field experiment was conducted to study effects of diff...Mulching can effectively maintain soil moisture;color of mulching film affects soil water storage capacity and further promote crop growth to improve grain yield.Field experiment was conducted to study effects of different film colors on dry matter accumulation(DMA)and grain yield of oil flax.Results showed that white plastic film mulching could increase leaf area,chlorophyll content and DMA.DMA of white film mulching and micro-ridge with soil covering was 53.0%higher than that of CK,and 7.8%higher than that of black film mulching.Mulching method also influenced DMA.Micro-ridge alone increased it by 13.7%than flat cultivation and soil covering improved another 7.6%under white film mulching.Both white and black film mulching with microridge could significantly improve grain yield.Black film mulching with micro-ridge and soil covering,white film mulching with micro-ridge and no soil covering significantly increased capsule number per plant,1,000-grain weight and grain yield of oil flax,compared with CK.Grain yield increased 29.0%and 28.9%respectively.These results indicated that the above mulching methods were suitable for high yield cropping pattern in dry-farming regions.展开更多
基金This research was supported by the National Key Research and Development Program of China(2021YFE0101302and2021YFD1901102)the National Natural Science Foundation of China(31801314 and 31901475)。
文摘Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.
基金financially supported by the National Key Research & Development Program of China (Grant No.2022YFD1500402)the National Natural Science Foundation of China (Grant No.51809225)+1 种基金the China Postdoctoral Science Foundation (Grant Nos.2020T130559 and 2019M651977)the Natural Science Foundation of Jiangsu Province, China (Grant No.BK20180929)。
文摘Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed.
基金Supported by "Technological Demonstration of Large-scale Planting of Fine Quality Forage Grass and Crops" Sponsored by the Ministry of Science and Technology (2007BAD80B03)"Forage Production System Research" Sponsored by the Ministry of Science and Technology (2007BAD63B04)~~
文摘[Objective] The aim was to provide scientific reference for the production of silage maize in correlated regions of Tibet.[Method] Effects of film mulching on the growth period,growth traits and yield of silage maize and weed were analyzed.[Result] Under the treatment of film mulching,the growth period of silage maize could be advanced for 7-16 d; the plant length,stem diameter and leaf area were increased; and the grain output was increased by 75.9%.According to the market price of silage maize in 2008,22 500 Yuan/hm^2 was increased.There were 13 kinds of weeds in silage maize field,which belonged to 13 genera,8 families.Among them,6 kinds of weeds belonged to Gramineae,among which Echinochloa crusgalli and Setaria viridis were dominated in the weed communities.Plantago depressa,Eragrostis pilosa and Malva verticillata var.chinensis could be totally controlled by the film mulching; meanwhile the others could be also controlled in a certain degree except Echinochloa crusgalli.[Conclusion] The plastic mulching planting is worth popularizing for the developing of animal husbandry and the incoming of the local farmers in Tibet.
基金Supported by National Sweet Potato Industrial Technology System(CARS-11-C-16)~~
文摘Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of sweet potato. The results showed that plastic filming mulching increased soil temperature. Considering the soil temperature-increasing effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. However, with the deepening of soil layer, the warming effect of plastic film mulching was weakened. Black or white plastic film mulching was conducive to low T/R value, especially in the early growth stage of sweet potato. Plastic film mulching significantly improved the storage root yield of sweet potato. In terms of yield-improving effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. The storage root num- ber per plant showed a downward trend, but the weight of single storage root was increased.
基金Supported by National State Supporting Program(2012BAD40B04-3)Guangxi Bagu Scholar Program(No.[2013]3)~~
文摘[Objective] The effects of different plastic films mulching on soil temperature and moisture, and growth and yield of sugarcane were discussed in order to provide references for using different plastic film in sugarcane pro-duction. [Method]Four kinds of plastic films viz., normal colorless transparent plastic film, milky photodegradation weeding plastic film, black plastic film and gray-black plastic film were used in sugarcane cultivation by using no film mulching as the control. Soil temperature and moisture were measured during plastic film mulching period, and sugarcane agronomic traits such as emergence rate, tillering rate, plant hight, stalk diameter and effective stalk number were investigated during growth period, the cane yield and economic benefits were calculated during harvest period. [Result] The results showed that plastic film mulching could significantly increase soil temperature and moisture. Com-pared with the control, soil temperature was increased by 0.3-0.8 ℃ in three plastic films mulching treatment except for gray-black plastic film mulching. The soil moisture of all mulching treatments was 10.1%-17.4% higher than the control. Furthermore, the seedling emergence rate, tillering rate, effective stalk number and cane yield also could be improved using plastic film mulching,which were increased by 0.8%-9.9%, 20.6%-34.9%, 5190-10980 stalks/hm^2and6.4%-14.9% as compared to the control,while plant height and stalk diameter were found to be no significant effect by plastic film mulching. The results of benefit analysis indicated that, milky photodegradation weeding film mulching had the highest economic benefit, the second were normal colorless transparent plastic film mulching and black plastic film mulching, which were 5 987.2, 1 876.5 and 1 813.5 Yuan/hm^2 higher than the control. The gray-black film mulching treatment had poor benefit.[Conclusion] The milky photodegradation weeding plastic film could be vigorously extended in sugarcane production. Normal colorless transparent plastic film and black plastic film could be ex-tended gradually as a new kind of plastic film. The grayblack film should not be used for its higher cost and more thickness.
基金Supported by the National Key Technology Research and Development Program(2014BAD07B01-02)Science and Technology Demonstration Project of Bohai Granary in Hebei ProvinceSpecial Fund of Agro-scientific Research in Public Interest(201303133-1-6)~~
文摘In order to solve the problem that dry-land foxtail millet production completely relies on rainwater with low instable yield and tedious cultivation, Millet Research Institute of Hebei Academy of Agriculture and Forestry Sciences integrated a light simplified production technique integrating film mulching, hole sowing and fertilization with mechanized production, forming the light simplified foxtail millet production technique adopting film mulching and hole sowing. This study introduced the light simplified foxtail millet production technique adopting film mulching and hole sowing, including main links such as preparation before sowing, sowing, attached agricultural machines, field management, harvest and residual film recovery.
文摘Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic film mulching plus bunch planting had a significant promoting effect on root growth and development and yield of foxtail millet. Compared with the CK, the total root length, total surface area, total root volume and number of. root tips increased by 51.30%, 47.89%, 48.39% and 41.63%, respectively. The yield increased by 48.57%, and there was significant positive correlation between root length, total surface area, total volume, number of root tips and dry matter weight of roots with yield. Developed roots are the main reason for the yield increasing effect of water-permeability plastic film mulching plus bunch planting.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture,China(201003014)
文摘Pollution of residual plastic film in arable lands is a severe problem in China. In this study, the status of residual film and influential factors were investigated using the methods of farm survey in combination with questionnaires and quadrat sampling at a large number of field sites in Xinjiang Uygur Autonomous Region, China. The results showed that the amount of film utilization increased largely and reached to 1.8×10~5 t in 2013. Similarly, the mulching area also substantially increased in recent decades, and reached to 2.7×10~5 ha in the same year. According to the current survey, 60.7% of the sites presented a greater mulch residue than the national film residue standard(75 kg ha^(–1)), and the maximum residual amount reached 502.2 kg ha^(–1) in Turpan, Xinjiang. The film thickness, the mulching time and the crop type all influenced mulch residue. The thickness of the film had significantly negative correlation with the amount of residual film(P0.05), while the mulching years had significantly positive correlation with it(P0.05). The total amount of residual film in Xinjiang was 3.43×105 t in 2011, which accounted for 15.3% of the cumulative dosage of mulching. Among all the crops, the cotton fields had the largest residual amount of mulch film(158.4 kg ha^(–1)), and also the largest contribution(2.6×10~5 tons) to the total amount of residual film in Xinjiang.
基金supported by the Natural Science Foundation of Shandong Province,China(ZR2014YL015)the Agricultural Seed of Shandong Province,China(2016LZGC005)+1 种基金the earmarked fund for China Agriculture Research System(CARS-10-B7 and CARS-10-B8)the Youth Foundation of Shandong Academy of Agricultural Sciences,China(2014QNM31)
文摘The root quality of sweet potato cultivated during the summer season is poor in northern China;thus,this study was conducted to determine whether root quality could be improved through mulching with plastic film(MPF).The effect of MPF on root starch and its composition,the activity of starch synthesis enzymes,and other quality-related parameters were investigated in two purple flesh sweet potato cultivars,Jishu 18 and Ayamurasaki(Aya).The results indicated that root dry matter,anthocyanin content,adenosine triphosphate(ATP),and starch content were higher in both cultivars under the MPF treatment than those under the control treatment.The root adenosine diphosphate glucose pyrophosphorylase/uridine diphosphate glucose pyrophosphorylase(ADPGPPase/UDPGPPase)activity and adenosine triphosphatease(ATPase)activity were increased using MPF.However,under the MPF treatment,the amylose content,soluble sugar content,and granule-bound synthase(GBSS)activity increased in Jishu 18 but decreased in Aya,and the amylopectin content,protein content,and soluble starch synthase(SSS)activity decreased in Jishu 18 but increased in Aya.Therefore,MPF seems benifit to improve the quality of sweet potato,but the effects of this treatment condition may be dependent on the cultivar.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest,China (201503125,201503105)the National High Technology Research and Development Program of China (2011AA100504)
文摘Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.
基金financially supported by the National Natural Science Foundation of China(31270553,51279197,41401343)the Special Fund for Agricultural Profession, China(201103003)
文摘To better understand the effects of plastic film mulching on soil greenhouse gases(GHGs) emissions,we compared seasonal and vertical variations of GHG concentrations at seven soil depths in maize(Zea mays L.) fields at Changwu station in Shaanxi,a semi-humid region,between 2012 and 2013.Gas samples were taken simultaneously every one week from non-mulched(BP) and plastic film-mulched(FM) field plots.The results showed that the concentration of GHGs varied distinctly at the soil-atmosphere interface and in the soil profile during the maize growing season(MS).Both carbon dioxide(CO_2) and nitrous oxide(N_2O) concentrations increased with increasement of soil depth,while the methane(CH_4)concentrations decreased with increasement of soil depth.A strong seasonal variation pattern was found for CO_2 and N_2O concentrations,as compared to an inconspicuous seasonal variation of CH_4 concentrations.The mean CO_2 and N_2O concentrations were higher,but the mean CH_4 concentration in the soil profiles was lower in the FM plots than in the BP plots.The results of this study suggested that plastic film mulching significantly increased the potential emissions of CO_2and N_2O from the soil,and promoted CH_4 absorption by the soil,particularly during the MS.
基金financially supported by the Special Fund for Agro-scientific Research in the Public Interest in China(201303104 and 201503120)the earmarked fund for China Agriculture Research System(CARS-03-01-24)+1 种基金the Key Science and Technology Program of Shanxi Province,China(20140311008-3)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAD23B04)
文摘Shortages and fluctuations in precipitation are influential limiting factors for the sustainable cultivation of rain-fed winter wheat on the Loess Plateau of China. Plastic film mulching is one of the most effective water management practices to improve soil moisture, and may be useful in the Loess Plateau for increasing soil water storage. A field experiment was conducted from July 2010 to June 2012 on the Loess Plateau to investigate the effects of mulching time and rates on soil water storage, evapotranspiration (ET), water use efficiency (WUE), and grain yield. Six treatments were conducted: (1) early mulching (starting 30 days after harvest) with whole mulching (EW); (2) early mulching with half mulching (EH); (3) early mulching with no mulching (EN); (4) late mulching (starting 60 days after harvest) with whole mulching (LW); (5) late mulching with half mulching (LH); and (6) late mulching with no mulching (LN). EW increased precipitation storage efficiency during the fallow periods of each season by 18.4 and 17.8%, respectively. EW improved soil water storage from 60 days after harvest to the booting stage and also outperformed LN by 13.8 and 20.9% in each growing season. EW also improved spike number per ha by 13.8 and 20.9% and grain yield by 11.7 and 17.4% during both years compared to LN. However, EW decreased WUE compared with LN. The overall results of this study demonstrated that EW could be a productive and efficient practice to improve wheat yield on the Loess Plateau of China.
基金This study was supported by a key grant from China National 863 High Technology Program(2002AA2Z4021—2)the National Natural Science Foundation of China(30070439,303002 1 3) the Young Key Scholar Program of Northwest A & F University
文摘The effects of film mulching of millet on soil water content were studied in semi-arid areas in the Loess Plateau of South Ningxia, China. Different mulching methods including water micro-collecting farming (WF), water micro-collecting farming in winter fallow (WW), hole seeding on film (HF), hole seeding on film in winter fallow (HW) were compared to determine the effects of mulching methods on soil water collecting and conservation during millet growth periods of 2003-2004, as well as the variation tendency of water content after rainfall, output of millet and water use efficiency (WUE). The experimental results in the two successive years indicated that water micro-collecting farming had a better function of collecting water after rainfall, and side infiltrated water was stored under the ridges and the top layer 0-40 cm soil water changes were great. WF had obvious role in water collection and preservation of soil moisture. It effectively improved the water supply capacity by about 19.05% in the end of growth seasons. The storage of HW and WW increased by 24.9 and 7.1 mm compared with CK, and output of yield were obviously increased. Film mulching increased the yield of millet and enhanced water use efficiency (WUE). During different growth periods, WF exhibited better water storage function with lower water consumption, and demonstrated optimal social and ecological benefits.
基金supported by the Science and Technology Foundation of Guizhou Province,China (20146015-2,20152099 and 20161097)the Special Fund for Excellent Young Talents of Guizhou Province,China (201534)the Foundation of Guizhou Academy of Tobacco Science,China (GZYKS2018-02)
文摘Solving high-temperature plastic mulching film-induced leaf burning in the first week during tobacco cultivation would take much time and effort. In the present study, the growth as well as the leaf sugar and nicotine contents of seedlings with or without leaf burning induced by high-temperature plastic mulching film were tested at two independent sites in 2015 and 2016 to identify the influence of leaf burning on seedling growth. The results showed that the growth of seedlings with leaf burning was improved with increased leaf area, leaf number and plant height compared to those without leaf burning, combined with an increased seedling survival rate at two sites in two years. In seedlings with leaf burning, the contents of fructose and glucose increased and peaked at 11:00 and 13:00 in the leaf and root, respectively, with an increased root nicotine content beginning at 13:00, highlighting the signalling role of sugars. Activities of antioxidant enzymes including peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) were all increased in seedlings with leaf burning. More plant biomass was allocated to roots in seedlings with leaf burning with increased root volume compared to control seedlings, which might facilitate the absorption of water and nutrients from the soil. Our findings demonstrate that high-temperature plastic mulching film-induced leaf burning not inhibited but benefited seedling survival and growth, suggesting that the time and labour-consuming manual plucking of burnt leaves can be avoided during tobacco cultivation.
文摘In order to study current situation of application,recycling and residue pollution of mulching films in Xinjiang,and accurately grasp pollution degree of residue of mulching films,this paper made an empirical analysis on residue of mulching films in 31 typical counties and cities in Xinjiang. Results indicate that( i) use of mulching films in Xinjiang is wide and there is great difference in use and residue recycling between cities and counties. Planting area and planting structure jointly influence use of mulching films,and the use of mulching films is significantly correlated with recycling of mulching films,but not correlated with recycling rate of mulching films.( ii) There are significant differences in distribution of residue of mulching films,highest in North Xinjiang and South Xinjiang,followed by East Xinjiang,and the lowest in West Xinjiang.( iii) There are significant differences in distribution of residue of mulching films between different crop fields. Residue of mulching films in cotton field is the key problem of pollution.
基金This study was funded by the National Natural Science Foundation of China(51979235,51909221)the Agricultural Science and Technology Innovation Integration Promotion Project of Shaanxi Province,China(SXNYLSYF2019-01)+1 种基金the China Postdoctoral Science Foundation(2019M650277)the Natural Science Basic Research Plan in Shaanxi Province,China(2020JQ-276).
文摘Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in the Loess Plateau of China.In this study,we tried to select a suitable ridge-furrow mulching system to improve this situation.A two-year field experiment of summer maize(Zea mays L.)during the growing seasons of 2017 and 2018 was conducted to systematically analyze the effects of flat planting with no film mulching(CK),ridge-furrow with ridges mulching and furrows bare(RFM),and double ridges and furrows full mulching(DRFFM)on soil temperature,soil water storage(SWS),root growth,aboveground dry matter,water use efficiency(WUE),and grain yield.Both RFM and DRFFM significantly increased soil temperature in ridges,while soil temperature in furrows for RFM and DRFFM was similar to that for CK.The largest SWS was observed in DRFFM,followed by RFM and CK,with significant differences among them.SWS was lower in ridges than in furrows for RFM.DRFFM treatment kept soil water in ridges,resulting in higher SWS in ridges than in furrows after a period of no water input.Across the two growing seasons,compared with CK,RFM increased root mass by 10.2%and 19.3%at the jointing and filling stages,respectively,and DRFFM increased root mass by 7.9%at the jointing stage but decreased root mass by 6.0%at the filling stage.Over the two growing seasons,root length at the jointing and filling stages was respectively increased by 75.4%and 58.7%in DRFFM,and 20.6%and 30.2%in RFM.Relative to the jointing stage,the increased proportions of root mass and length at the filling stage were respectively 42.8%and 94.9%in DRFFM,63.2%and 115.1%in CK,and 76.7%and 132.1%in RFM,over the two growing seasons,showing that DRFFM slowed down root growth while RFM promoted root growth at the later growth stages.DRFFM treatment increased root mass and root length in ridges and decreased them in 0-30 cm soil layer,while RFM increased them in 0-30 cm soil layer.Compared with CK,DRFFM decreased aboveground dry matter while RFM increased it.Evapotranspiration was reduced by 9.8%and 7.1%in DRFFM and RFM,respectively,across the two growing seasons.Grain yield was decreased by 14.3%in DRFFM and increased by 13.6%in RFM compared with CK over the two growing seasons.WUE in CK was non-significantly 6.8%higher than that in DRFFM and significantly 22.5%lower than that in RFM across the two growing seasons.Thus,RFM planting pattern is recommended as a viable water-saving option for summer maize in the Loess Plateau of China.
文摘Six-year Statuma mandarin (Citrus unshiu Marc. Cv. Miyagawa Wase) trees were used as materials to investigate the effects of plastic film mulching on quality and appearance of Statuma mandarin fruit during three periods of cell division, cell enlargement and mature stages. The results showed that mulching during the cell division and early-mature stages increased total sugar and reduced sugar content of fruit as well as the Vc content, compared to the control. However, the titratable acid content, fruit size, peel weight and single fruit weight were all lower than the control. Film mulching during the cell division phage resulted in higher edible fruit rate, while the fruit shape index was similar to the control. Mulching during the early-mature stage didn’t affect the edible rate of fruit, but caused lower fruit shape index. Compared to the control, film mulching during the cell enlargement period caused lower total and reducing sugar content, titratable acid content and edible rate, while the Vc content was a little bit higher than the control. In addition, the fruit size, peel weight, single fruit weight and fruit shape index were all lower than the control. Mulching during the early-mature period effectively enhanced the content of total and reduced sugar and Vc and decreased the titratable acid content. Hence, it increased fruit quality but had negative effect on fruit appearance.
基金supported by the National Natural Science Foundation of China (51909228 and 52209071)the “High-level Talents Support Program” of Yangzhou University+2 种基金“Chunhui Plan” Cooperative Scientific Research Project of Ministry of Education of China (HZKY20220115)the China Postdoctoral Science Foundation (2020M671623)the “Blue Project” of Yangzhou University。
文摘Temperature compensatory effect, which quantifies the increase in cumulative air temperature from soil temperature increase caused by mulching, provides an effective method for incorporating soil temperature into crop models. In this study, compensated temperature was integrated into the AquaCrop model to investigate the capability of the compensatory effect to improve assessment of the promotion of maize growth and development by plastic film mulching(PM). A three-year experiment was conducted from2014 to 2016 with two maize varieties(spring and summer) and two mulching conditions(PM and non-mulching(NM)), and the AquaCrop model was employed to reproduce crop growth and yield responses to changes in NM, PM, and compensated PM. A marked difference in soil temperature between NM and PM was observed before 50 days after sowing(DAS) during three growing seasons. During sowing–emergence and emergence–tasseling, the increase in air temperature was proportional to the compensatory coefficient, with spring maize showing a higher compensatory temperature than summer maize. Simulation results for canopy cover(CC) were generally in good agreement with the measurements, whereas predictions of aboveground biomass and grain yield under PM indicated large underestimates from 60 DAS to the end of maturity. Simulations of spring maize biomass and yield showed general increase based on temperature compensation, accompanied by improvement in modeling accuracy, with RMSEs decreasing from 2.5 to 1.6 t ha^(-1)and from 4.1 t to 3.4 t ha^(-1). Improvement in biomass and yield simulation was less pronounced for summer than for spring maize, implying that crops grown during low-temperature periods would benefit more from the compensatory effect. This study demonstrated the effectiveness of the temperature compensatory effect to improve the performance of the AquaCrop model in simulating maize growth under PM practices.
基金Supported by Cotton Innovation Team of Modern Agriculture Technology System of Shandong Province(SDAIT-07)Special Fund for Independent Innovation Achievement Transformation(2013ZHZX2A0402)~~
文摘In order to get a clear picture of distribution characteristics of mulching plastic film residue in cotton fields in the Yellow River Delta and make scientific pollution prevention and control strategies, an investigation was conducted in Dongying City. Five typical cotton fields were chosen, and then the number, distri- bution density and area of residual film were measured. The results showed that the residual film was 18. 84-53. 53 kg/hm^2 in cotton fields for more than 20 years, and the differences between fields were larger. The residual density was 225-340 thousand per hectare. There were great differences among residual pieces. The proportion of residual pieces over 25 cm^2 was 94. 1%, that between 100 cm^2 and 500 cm^2 was more than 50. 0%, and that bigger than 500 cm^2 was about 21. 0%. In the Yellow River Delta cotton region, large, thin and difficult to recovery were the main characteristics of mulching plastic film residue, and it had the possibility of mi- grating to deep soil. Thus, the ecological risk of mulching plastic film residue was higher. Key words The Yellow River Delta; Cotton field; Residue of mulching plastic film; Distribution characteristic
基金financial supports provided by the National Natural Science Programs of China(31360315,31760363)the China Agriculture Research System of Construct Special(CARS-14-1-16)the Fuxi Outstanding Talent Cultivation Plan of Gansu Agricultural University(Gaufx-02J05)。
文摘Mulching can effectively maintain soil moisture;color of mulching film affects soil water storage capacity and further promote crop growth to improve grain yield.Field experiment was conducted to study effects of different film colors on dry matter accumulation(DMA)and grain yield of oil flax.Results showed that white plastic film mulching could increase leaf area,chlorophyll content and DMA.DMA of white film mulching and micro-ridge with soil covering was 53.0%higher than that of CK,and 7.8%higher than that of black film mulching.Mulching method also influenced DMA.Micro-ridge alone increased it by 13.7%than flat cultivation and soil covering improved another 7.6%under white film mulching.Both white and black film mulching with microridge could significantly improve grain yield.Black film mulching with micro-ridge and soil covering,white film mulching with micro-ridge and no soil covering significantly increased capsule number per plant,1,000-grain weight and grain yield of oil flax,compared with CK.Grain yield increased 29.0%and 28.9%respectively.These results indicated that the above mulching methods were suitable for high yield cropping pattern in dry-farming regions.