Deep metric learning(DML)has achieved great results on visual understanding tasks by seamlessly integrating conventional metric learning with deep neural networks.Existing deep metric learning methods focus on designi...Deep metric learning(DML)has achieved great results on visual understanding tasks by seamlessly integrating conventional metric learning with deep neural networks.Existing deep metric learning methods focus on designing pair-based distance loss to decrease intra-class distance while increasing interclass distance.However,these methods fail to preserve the geometric structure of data in the embedding space,which leads to the spatial structure shift across mini-batches and may slow down the convergence of embedding learning.To alleviate these issues,by assuming that the input data is embedded in a lower-dimensional sub-manifold,we propose a novel deep Riemannian metric learning(DRML)framework that exploits the non-Euclidean geometric structural information.Considering that the curvature information of data measures how much the Riemannian(nonEuclidean)metric deviates from the Euclidean metric,we leverage geometry flow,which is called a geometric evolution equation,to characterize the relation between the Riemannian metric and its curvature.Our DRML not only regularizes the local neighborhoods connection of the embeddings at the hidden layer but also adapts the embeddings to preserve the geometric structure of the data.On several benchmark datasets,the proposed DRML outperforms all existing methods and these results demonstrate its effectiveness.展开更多
Let M be a smooth manifold and S ⊆ M a properly embedded smooth submanifold. Suppose that we have a fibre metric on TM|<sub>s</sub> i.e. a positive definite real inner-product on T<sub>p</sub>M...Let M be a smooth manifold and S ⊆ M a properly embedded smooth submanifold. Suppose that we have a fibre metric on TM|<sub>s</sub> i.e. a positive definite real inner-product on T<sub>p</sub>M for all p ∈ S, which depends smoothly on p ∈ S. The purpose of this article is to figure out that the fibre metric on TM|s</sub> can always be extended to a Riemannian metric on TM from a special perspective.展开更多
A method for quality mesh generation of parametric curved surfaces isproposed. It is shown that the main difference between the proposed method and previous ones is thatour meshing process is done completely in the pa...A method for quality mesh generation of parametric curved surfaces isproposed. It is shown that the main difference between the proposed method and previous ones is thatour meshing process is done completely in the parametric domains with the guarantee of meshquality. To obtain this aim, the Delaunay method is extended to anisotropic context of 2D domains,and a Riemannian metric map is introduced to remedy the mapping distortion from object space toparametric domain. Compared with previous algorithms, the approach is much simpler, more robust andspeedy. The algorithm is implemented and examples for several geometries are presented todemonstrate the efficiency and validity of the method.展开更多
In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strateg...In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.展开更多
These notes present and survey results about spaces and moduli spaces of complete Riemannian metrics with curvature bounds on open and closed manifolds, here focussing mainly on connectedness and disconnectedness prop...These notes present and survey results about spaces and moduli spaces of complete Riemannian metrics with curvature bounds on open and closed manifolds, here focussing mainly on connectedness and disconnectedness properties. They also discuss several open problems and questions in the field.展开更多
We establish the links between the lightlike geometry and basics invariants of the associated semi-Riemannian geometry on r-lightlike submanifold and semi-Riemannian constructed from a semi-Riemannian ambient. Then we...We establish the links between the lightlike geometry and basics invariants of the associated semi-Riemannian geometry on r-lightlike submanifold and semi-Riemannian constructed from a semi-Riemannian ambient. Then we establish some basic inequalities, involving the scalar curvature and shape operator on r-lightlike coisotropic submanifold in semi-Riemannian manifold. Equality cases are also discussed.展开更多
In this paper,we study the(α,β)-metrics of constant flag curvature.We characterize almost regular(α,β)-metrics of constant flag curvature under the condition that β is a homothetic 1-form with respect to a.Furthe...In this paper,we study the(α,β)-metrics of constant flag curvature.We characterize almost regular(α,β)-metrics of constant flag curvature under the condition that β is a homothetic 1-form with respect to a.Furthermore,we prove that if a regular(α,β)-metric is of constant flag curvature and β is a Killing 1-form with constant length,then it must be a Riemannian metric or locally Minkowskian.展开更多
In this paper,the modern geometrical structure of analytical mechanics,the exterior differential forms and the geometrical meaning of dynamic equations are briefly discussed.
The notion of the holomorphic curvature for a Complex Finsler space (M,F) is defined with respect to the Chern complex linear connection on the pull-back tangent bundle. This paper is about the fundamental metric tens...The notion of the holomorphic curvature for a Complex Finsler space (M,F) is defined with respect to the Chern complex linear connection on the pull-back tangent bundle. This paper is about the fundamental metric tensor, inverse tensor and as a special approach of the pull-back bundle is devoted to obtaining the holomorphic curvature of Complex Finsler Square metrics. Further, it proved that it is not a weakly Kähler.展开更多
The planetary bodies are more of a spheroid than they are a sphere thereby making it necessary to describe motions in a spheroidal coordinate system. Using the oblate spheroidal coordinate system, a more approximate a...The planetary bodies are more of a spheroid than they are a sphere thereby making it necessary to describe motions in a spheroidal coordinate system. Using the oblate spheroidal coordinate system, a more approximate and realistic description of motion in these bodies can be realized. In this paper, we derive the Riemannian acceleration for motion in oblate spheroidal coordinate system using the golden metric tensor in oblate spheroidal coordinates. The Riemannian acceleration in the oblate spheroidal coordinate system reduces to the pure Newtonian acceleration in the limit of c<sup>0</sup> and contains post-Newtonian correction terms of all orders of c<sup>-2</sup>. The result obtained thereby opens the way for further studies and applications of the motion of particles in oblate spheroidal coordinate system.展开更多
The true meaning of the constant in the Robertson-Walker metric is discussed when the scalar factor s the function of time. By strict calculation based on the Riemannian geometry, it is proved that the spatial curvatu...The true meaning of the constant in the Robertson-Walker metric is discussed when the scalar factor s the function of time. By strict calculation based on the Riemannian geometry, it is proved that the spatial curvature of the R-W metric is K=(κ-R2)/R2 . The result indicates that the R-W metric has no constant curvature when R(t)≠0 and κ is not spatial curvature factor. We can only consider κ as an adjustable parameter with κ≠0 in general situations. The result is completely different from the current understanding which is based on the precondition that the scalar factor R(t) is fixed. Due to this result, many conclusions in the current cosmology such as the densities of dark material and dark energy should be re-estimated. In this way, we may overcome the current puzzling situation of cosmology thoroughly.展开更多
基金supported in part by the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)the National Natural Science Foundation of China(61621003,62101136)+2 种基金Natural Science Foundation of Shanghai(21ZR1403600)Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)ZJLab,and Shanghai Municipal of Science and Technology Project(20JC1419500)。
文摘Deep metric learning(DML)has achieved great results on visual understanding tasks by seamlessly integrating conventional metric learning with deep neural networks.Existing deep metric learning methods focus on designing pair-based distance loss to decrease intra-class distance while increasing interclass distance.However,these methods fail to preserve the geometric structure of data in the embedding space,which leads to the spatial structure shift across mini-batches and may slow down the convergence of embedding learning.To alleviate these issues,by assuming that the input data is embedded in a lower-dimensional sub-manifold,we propose a novel deep Riemannian metric learning(DRML)framework that exploits the non-Euclidean geometric structural information.Considering that the curvature information of data measures how much the Riemannian(nonEuclidean)metric deviates from the Euclidean metric,we leverage geometry flow,which is called a geometric evolution equation,to characterize the relation between the Riemannian metric and its curvature.Our DRML not only regularizes the local neighborhoods connection of the embeddings at the hidden layer but also adapts the embeddings to preserve the geometric structure of the data.On several benchmark datasets,the proposed DRML outperforms all existing methods and these results demonstrate its effectiveness.
文摘Let M be a smooth manifold and S ⊆ M a properly embedded smooth submanifold. Suppose that we have a fibre metric on TM|<sub>s</sub> i.e. a positive definite real inner-product on T<sub>p</sub>M for all p ∈ S, which depends smoothly on p ∈ S. The purpose of this article is to figure out that the fibre metric on TM|s</sub> can always be extended to a Riemannian metric on TM from a special perspective.
基金This project is supported by National Natural Science Foundation of China(No.59990470).
文摘A method for quality mesh generation of parametric curved surfaces isproposed. It is shown that the main difference between the proposed method and previous ones is thatour meshing process is done completely in the parametric domains with the guarantee of meshquality. To obtain this aim, the Delaunay method is extended to anisotropic context of 2D domains,and a Riemannian metric map is introduced to remedy the mapping distortion from object space toparametric domain. Compared with previous algorithms, the approach is much simpler, more robust andspeedy. The algorithm is implemented and examples for several geometries are presented todemonstrate the efficiency and validity of the method.
文摘In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.
文摘These notes present and survey results about spaces and moduli spaces of complete Riemannian metrics with curvature bounds on open and closed manifolds, here focussing mainly on connectedness and disconnectedness properties. They also discuss several open problems and questions in the field.
文摘We establish the links between the lightlike geometry and basics invariants of the associated semi-Riemannian geometry on r-lightlike submanifold and semi-Riemannian constructed from a semi-Riemannian ambient. Then we establish some basic inequalities, involving the scalar curvature and shape operator on r-lightlike coisotropic submanifold in semi-Riemannian manifold. Equality cases are also discussed.
基金supported by the NationalNatural Science Foundation of China(11871126)the Science Foundation of Chongqing Normal University(17XLB022)。
文摘In this paper,we study the(α,β)-metrics of constant flag curvature.We characterize almost regular(α,β)-metrics of constant flag curvature under the condition that β is a homothetic 1-form with respect to a.Furthermore,we prove that if a regular(α,β)-metric is of constant flag curvature and β is a Killing 1-form with constant length,then it must be a Riemannian metric or locally Minkowskian.
基金Work supported by NSF of Henan Education Commission
文摘In this paper,the modern geometrical structure of analytical mechanics,the exterior differential forms and the geometrical meaning of dynamic equations are briefly discussed.
文摘The notion of the holomorphic curvature for a Complex Finsler space (M,F) is defined with respect to the Chern complex linear connection on the pull-back tangent bundle. This paper is about the fundamental metric tensor, inverse tensor and as a special approach of the pull-back bundle is devoted to obtaining the holomorphic curvature of Complex Finsler Square metrics. Further, it proved that it is not a weakly Kähler.
文摘The planetary bodies are more of a spheroid than they are a sphere thereby making it necessary to describe motions in a spheroidal coordinate system. Using the oblate spheroidal coordinate system, a more approximate and realistic description of motion in these bodies can be realized. In this paper, we derive the Riemannian acceleration for motion in oblate spheroidal coordinate system using the golden metric tensor in oblate spheroidal coordinates. The Riemannian acceleration in the oblate spheroidal coordinate system reduces to the pure Newtonian acceleration in the limit of c<sup>0</sup> and contains post-Newtonian correction terms of all orders of c<sup>-2</sup>. The result obtained thereby opens the way for further studies and applications of the motion of particles in oblate spheroidal coordinate system.
文摘The true meaning of the constant in the Robertson-Walker metric is discussed when the scalar factor s the function of time. By strict calculation based on the Riemannian geometry, it is proved that the spatial curvature of the R-W metric is K=(κ-R2)/R2 . The result indicates that the R-W metric has no constant curvature when R(t)≠0 and κ is not spatial curvature factor. We can only consider κ as an adjustable parameter with κ≠0 in general situations. The result is completely different from the current understanding which is based on the precondition that the scalar factor R(t) is fixed. Due to this result, many conclusions in the current cosmology such as the densities of dark material and dark energy should be re-estimated. In this way, we may overcome the current puzzling situation of cosmology thoroughly.