? The intensive extensional deformation in the eastern part of the Chinese continent in Late Mesozoic time (J3-K1) caused the formation of largescale fault basin system in Northeastern China block, metamorphic core ...? The intensive extensional deformation in the eastern part of the Chinese continent in Late Mesozoic time (J3-K1) caused the formation of largescale fault basin system in Northeastern China block, metamorphic core complexes in North China block and widespread volcanic eruption and granitic intrusive in eastern China. Generally, the deformation has been interpreted as subduction tectonics along the eastern continental margin. We suggest that the combination effect of the subduction and collision in Tethys domain and the subduction from Pacific side and the mantle upwelling beneath the lithosphere. This event controlled the Late Jurassic to Early Cretaceous tectonic history in eastern China.展开更多
The Lingshan Island scientific drill confirms that two episodes(Laiyang period and Qingshan period) of rifting developed in the central Sulu orogenic belt(SOB) in Late Mesozoic. With a set of methods including fieldwo...The Lingshan Island scientific drill confirms that two episodes(Laiyang period and Qingshan period) of rifting developed in the central Sulu orogenic belt(SOB) in Late Mesozoic. With a set of methods including fieldwork, drilling, core logging, zircon U-Pb dating and whole rock geochemistry applied, the age, the depositional sequence and the deep dynamic mechanisms of rift evolution were unraveled. The stratigraphic sequence of the Laiyang-Qingshan Groups on Lingshan Island was composed of two different rifting sequences:(1) Laiyang Group(147–125 Ma), which consists of deep-water gravity flow deposits with interlayers of intermediate volcanic rocks;and(2) Lower Qingshan Group(125–119 Ma), which unconformably overlies the former sequence and contains subaerial volcanic deposits and terrestrial deposits. The tectonic environment changed during the evolution of these two episodes of rifting: the rift was in a NNW-SSE extensional environment in the Laiyang period and showed the typical passive rifting character that “lithospheric extension and rifting preceded volcanism”. The passive rifting period was ended by a short WNW-ESE compression at about 125 Ma. After that, the tectonic environment transferred to a strong NW-SE extensional environment and the rifting evolved into a volcanic arc basin in the Qingshan period. The igneous rocks are shoshonitic to high-K calc-alkaline trachyandesites to trachytes with a few intercalated lamprophyres and a rhyolite.The geochemical characteristics of the igneous rocks indicate that they are mantle-derived melts with a metasomatized mantle source and/or crustal contamination. In addition, an increased thinning of the lithosphere happened during the rifting episodes.The low-angle subduction of the Paleo-Pacific plate in the Jurassic weakened the thickened SOB lithospheric mantle. The rollback of the subducting plate started in late Jurassic to early Cretaceous, and the SOB lithospheric mantle was delaminated synchronously because of the gravity collapse. Thus, this caused passive rifting in the Laiyang period. Thereafter, the rollback and trench retreat of the high-angle subducting Paleo-Pacific plate would have achieved its climax, resulting in the strong regional extension. Passive rifting was ended by the crustal uplift caused by asthenospheric upwelling beneath the rift. The lower crust was heated by the upwelling asthenosphere and partially melted to form felsic melts, which were emplaced upwards and erupted explosively. The rift evolved into a volcanic arc basin in the Qingshan period and showed some characteristics of active rifting. Above all, a passive rifting in the Laiyang period and a volcanic arc basin in the Qingshan period developed successively in the Lingshan Island area(the central SOB). This records the transfer of the study area from the Paleo-Tethys tectonic domain to the circum-Pacific tectonic domain. The delamination of SOB lithospheric mantle and the upwelling of asthenospheric material were the deep dynamic mechanisms driving the development and evolution of two rift episodes. Additionally, the rift development was controlled remotely by the subduction of the Paleo-Pacific plate.展开更多
On the basis of history study and the depositional study the systematic investigation of late Mesozoic sedimentary features and basin evolution are conducted.The architectural elements analysis of sedimentary environm...On the basis of history study and the depositional study the systematic investigation of late Mesozoic sedimentary features and basin evolution are conducted.The architectural elements analysis of sedimentary environment shows that the depositional environment of the early Jurassic in late Mesozoic basin(Gahai basin) in the study area is lacustrine environment,and is further展开更多
The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abund...The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abundant geological and petroleum information accumulated in process of industry oil and gas exploration and development of the Erlian basin group is comprehensively analyzed, the structures related to formation of basin are systematically studied, and the complete extensional tectonic system of this basin under conditions of wide rift setting and low extensional ratio is revealed by contrasting study with Basin and Range Province of the western America. Based on the above studies and achievements of the former workers, the deep background of the basin development is treated.展开更多
文摘? The intensive extensional deformation in the eastern part of the Chinese continent in Late Mesozoic time (J3-K1) caused the formation of largescale fault basin system in Northeastern China block, metamorphic core complexes in North China block and widespread volcanic eruption and granitic intrusive in eastern China. Generally, the deformation has been interpreted as subduction tectonics along the eastern continental margin. We suggest that the combination effect of the subduction and collision in Tethys domain and the subduction from Pacific side and the mantle upwelling beneath the lithosphere. This event controlled the Late Jurassic to Early Cretaceous tectonic history in eastern China.
基金supported by the Key R&D Plan of Shandong Province (Grant No. 2017CXGC1608)the Project of Department of Science and Technology of Sinopec (Grant No. P20028)+1 种基金the Shandong Natural Science Foundation Youth Fund Project (Grant No. ZR2020QD026)the Fundamental Research Funds for the Central Universities (Grant Nos. 18CX06019A, 19CX05004A)。
文摘The Lingshan Island scientific drill confirms that two episodes(Laiyang period and Qingshan period) of rifting developed in the central Sulu orogenic belt(SOB) in Late Mesozoic. With a set of methods including fieldwork, drilling, core logging, zircon U-Pb dating and whole rock geochemistry applied, the age, the depositional sequence and the deep dynamic mechanisms of rift evolution were unraveled. The stratigraphic sequence of the Laiyang-Qingshan Groups on Lingshan Island was composed of two different rifting sequences:(1) Laiyang Group(147–125 Ma), which consists of deep-water gravity flow deposits with interlayers of intermediate volcanic rocks;and(2) Lower Qingshan Group(125–119 Ma), which unconformably overlies the former sequence and contains subaerial volcanic deposits and terrestrial deposits. The tectonic environment changed during the evolution of these two episodes of rifting: the rift was in a NNW-SSE extensional environment in the Laiyang period and showed the typical passive rifting character that “lithospheric extension and rifting preceded volcanism”. The passive rifting period was ended by a short WNW-ESE compression at about 125 Ma. After that, the tectonic environment transferred to a strong NW-SE extensional environment and the rifting evolved into a volcanic arc basin in the Qingshan period. The igneous rocks are shoshonitic to high-K calc-alkaline trachyandesites to trachytes with a few intercalated lamprophyres and a rhyolite.The geochemical characteristics of the igneous rocks indicate that they are mantle-derived melts with a metasomatized mantle source and/or crustal contamination. In addition, an increased thinning of the lithosphere happened during the rifting episodes.The low-angle subduction of the Paleo-Pacific plate in the Jurassic weakened the thickened SOB lithospheric mantle. The rollback of the subducting plate started in late Jurassic to early Cretaceous, and the SOB lithospheric mantle was delaminated synchronously because of the gravity collapse. Thus, this caused passive rifting in the Laiyang period. Thereafter, the rollback and trench retreat of the high-angle subducting Paleo-Pacific plate would have achieved its climax, resulting in the strong regional extension. Passive rifting was ended by the crustal uplift caused by asthenospheric upwelling beneath the rift. The lower crust was heated by the upwelling asthenosphere and partially melted to form felsic melts, which were emplaced upwards and erupted explosively. The rift evolved into a volcanic arc basin in the Qingshan period and showed some characteristics of active rifting. Above all, a passive rifting in the Laiyang period and a volcanic arc basin in the Qingshan period developed successively in the Lingshan Island area(the central SOB). This records the transfer of the study area from the Paleo-Tethys tectonic domain to the circum-Pacific tectonic domain. The delamination of SOB lithospheric mantle and the upwelling of asthenospheric material were the deep dynamic mechanisms driving the development and evolution of two rift episodes. Additionally, the rift development was controlled remotely by the subduction of the Paleo-Pacific plate.
基金Supported by the project of China Petroleum & Chemical Corporation,the present paper is aimed at the late Mesozoic sedimentary features and basin evolution of the western segment of Bailongjiang Uplift Zone in the Songpan area
文摘On the basis of history study and the depositional study the systematic investigation of late Mesozoic sedimentary features and basin evolution are conducted.The architectural elements analysis of sedimentary environment shows that the depositional environment of the early Jurassic in late Mesozoic basin(Gahai basin) in the study area is lacustrine environment,and is further
文摘The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abundant geological and petroleum information accumulated in process of industry oil and gas exploration and development of the Erlian basin group is comprehensively analyzed, the structures related to formation of basin are systematically studied, and the complete extensional tectonic system of this basin under conditions of wide rift setting and low extensional ratio is revealed by contrasting study with Basin and Range Province of the western America. Based on the above studies and achievements of the former workers, the deep background of the basin development is treated.