Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/appro...Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.展开更多
In automobile wheel application, a test rig is vital and used to simulate conditions of the wheel in service in order to affirm the safety and reliability of the wheel. The present work designed a test rig for measuri...In automobile wheel application, a test rig is vital and used to simulate conditions of the wheel in service in order to affirm the safety and reliability of the wheel. The present work designed a test rig for measuring axial strains in automobile wheel. The wheel used was a five-arm wheel (6JX14H2;ET 42) and Tyre (175 × 65 R 14). Experimental (EXP) test was carried out, with a radial load of 4750 N and inflation pressure of 0.3 MPa, to measure the axil strains which were converted to maximum principal strain values and, compared with data from Finite Element Analysis (FEA) using Creo-Element/Pro 5.0 at wheel’s contact angles of 90 degree (FEA 90 deg), 40 degree (FEA 40 deg) and 30.25 degree (FEA 30.25 deg), respectively. Results show that at the wheel’s point of contact with the ground, maximum principal strain values were highest at the inboard bead seat with a value of about 5.69 × 10<sup>-4</sup> mm/mm, followed by the values at the well of about 5.66 × 10<sup>-4</sup> mm/mm. The value at the outboard bead seat was least at about 2.22 × 10<sup>-4</sup> mm/mm, which was due to the presence of spikes at this location that tends to resist imposed radial loads. However, the highest mean maximum principal strain values at the locations of inboard, well and outboard, were about 2.11 × 10<sup>-4</sup> mm/mm, 3.78 × 10<sup>-4</sup> mm/mm and .99 × 10<sup>-4</sup> mm/mm, respectively. With the highest single value of about 5.69 × 10<sup>-4</sup> mm/mm, the inboard bead seat was the most strained location of the wheel. Overall results showed that all values of maximum principal strains were below the threshold value of about 1 × 10<sup>-2</sup> mm/mm. The values obtained for EXP and FEA could be said to be in close agreement when compared with the threshold value. With this in mind, the rig is recommended for use in related experimental procedures.展开更多
This paper describes the force acting the assembly of the jumbo rig for tunneling.The finite element analysis is used to calculate this machine structure on its different working states.
Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the sim...Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.展开更多
Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesio...Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.展开更多
The existing hydraulic system always have problems of temperature rise,runningstability and anti-interference of the implementation components,reliability of hydrauliccomponents,maintenance difficulties,and other issu...The existing hydraulic system always have problems of temperature rise,runningstability and anti-interference of the implementation components,reliability of hydrauliccomponents,maintenance difficulties,and other issues.With high efficiency,energysaving,reliability,easy operating,stable running,anti-interference ability,and other advantages,the load-sensitive hydraulic system is more suitable for coal mine all-hydrauliccore rig.Therefore,for the technical development of the coal mine all-hydraulic core rig,the load-sensitive technology employed by the rig should be of great significance.展开更多
In wheel–rail adhesion studies,most of the test rigs used are simplified designs such as a single wheel or wheelset,but the results may not be accurate.Alternatively,representing the complex system by using a full ve...In wheel–rail adhesion studies,most of the test rigs used are simplified designs such as a single wheel or wheelset,but the results may not be accurate.Alternatively,representing the complex system by using a full vehicle model provides accurate results but may incur complexity in design.To trade off accuracy over complexity,a bogie model can be the optimum selection.Furthermore,only a real-time model can replicate its physical counterpart in the time domain.Developing such a model requires broad expertise and appropriate software and hardware.A few published works are available which deal with real-time modeling.However,the influence of the control system has not been included in those works.To address these issues,a real-time scaled bogie test rig including the control system is essential.Therefore,a 1:4 scaled bogie roller rig is developed to study the adhesion between wheel and roller contact.To compare the performances obtained from the scaled bogie test rig and to expand the test applications,a numerical simulation model of that scaled bogie test rig is developed using Gensys multibody software.This model is the complete model of the test rig which delivers more precise results.To exactly represent the physical counterpart system in the time domain,a real-time scaled bogie test rig(RT-SBTR)is developed after four consecutive stages.Then,to simulate the RT-SBTR to solve the internal state equations and functions representing the physical counterpart system in rigs used are simplified designs such as a single wheel or wheelset,but the results may not be accurate.Alternatively,representing the complex system by using a full vehicle model provides accurate results but may incur complexity in design.To trade off accuracy over complexity,a bogie model can be the optimum selection.Furthermore,only a real-time model can replicate its physical counterpart in the time domain.Developing such a model requires broad expertise and appropriate software and hardware.A few published works are available which deal with real-time modeling.However,the influence of the control system has not been included in those works.To address these issues,a real-time scaled bogie test rig including the control system is essential.Therefore,a 1:4 scaled bogie roller rig is developed to study the adhesion between wheel and roller contact.To compare the performances obtained from the scaled bogie test rig and to expand the test applications,a numerical simulation model of that scaled bogie test rig is developed using Gensys multibody software.This model is the complete model of the test rig which delivers more precise results.To exactly represent the physical counterpart system in the time domain,a real-time scaled bogie test rig(RT-SBTR)is developed after four consecutive stages.Then,to simulate the RT-SBTR to solve the internal state equations and functions representing the physical counterpart system in equal or less than actual time,the real-time simulation environment is prepared in two stages.To such end,the computational time improved from 4 times slower than real time to 2 times faster than real time.Finally,the real-time scaled bogie model is also incorporated with the braking control system which slightly reduces the computational performances without affecting real-time capability.展开更多
The consequences of ship collisions with an oil rig, offshore installation or platform can be far more expensive in relation to safety, environment and costs of damage. The damage due to a single incident of an Oil Ri...The consequences of ship collisions with an oil rig, offshore installation or platform can be far more expensive in relation to safety, environment and costs of damage. The damage due to a single incident of an Oil Rig Collision can be catastrophic due to the number of people on board and the added risk of explosion. However, the existing rules and regulations of collisions prevention are insufficient. The purpose of this article is to critically evaluate the risk of ships collisions with offshore platforms and installations and therefore propose an international regulation for the preventions of this type of collisions.展开更多
Research has been done on an energy-saving type of hydraulic workover rig. This rig can recover and reuse the potential energy which is released by the pipestring when lowered, and the equipped power of this rig is on...Research has been done on an energy-saving type of hydraulic workover rig. This rig can recover and reuse the potential energy which is released by the pipestring when lowered, and the equipped power of this rig is only one third of an ordinary rig. The structure and theory of this rig are introduced. The mathematical model of lowering the pipestring is established and a simulation analysis is conducted. Through simulation some conclusions are obtained: The lighter the pipestring is, the less velocity of lowering the pipestring is; The smaller the throttle valve path area is, the less velocity of lowering the pipestring is; Different air vessel volumes have no evident effect on the pipestring lowering velocity. The actual measure results prove that the simulation results are right. Finally, the energy-saving effect of this rig is proved by the field test results.展开更多
Large diameter fans with low solidity are widely used in automotive application for engine cooling. Their designs with small chord length help reducing the torque on the electrical motor and providing a good aerodynam...Large diameter fans with low solidity are widely used in automotive application for engine cooling. Their designs with small chord length help reducing the torque on the electrical motor and providing a good aerodynamic compromise between several operating conditions, some of these being at high flow rate. Their global performances are measured according to the ISO standard DP 5801, which allows comparison of results from different facilities. However, some variations in global performances are observed when considering results from two different test rigs. On a fan selected for the purpose of this study, up to 6 % of efficiency is lost on the worst case. As efficiency is more than ever a key factor to select a component, some experimental and numerical investigations were conducted to analyze the fan behavior on each facility. Two sets of measurement and simulation are performed and compared. Geometries considered for the domain of computation include the test rig plenum, the torquemeter, the ground and a large domain for the atmospheric conditions. The exact fan geometry with tip clearance and under-hub ribs is also considered. Numerical results show a good agreement with experiment in both cases when convergence is reached and for low flow rate when computations are switched to unsteady mode. Comparisons show that simulations are able to capture the different fan behaviors depending on the confguration and those efficiency losses previously observed are correctly predicted. These results are further analyzed to perform some post-processing. Blade loading remains identical for both cases but disparities appear in the wake and its interaction with the surrounding. Tiny details that are often neglected during experiment and/or simulation appear to be the cause of slight variations. Position of the torquemeter and shape of the plenum are among the parameters that various and that have cumulative effects. Efficiency being a ration of pressure and torque, variations are rather important. Finally, these results are discussed in terms of rules for conception and a new geometry less sensible to loss of efficiency is proposed.展开更多
A separation method is proposed to design and improve shock absorber according to the characteristics of each force. The method is validated by rig test. The force data measured during rig test is the resultant force ...A separation method is proposed to design and improve shock absorber according to the characteristics of each force. The method is validated by rig test. The force data measured during rig test is the resultant force of damping force, rebound force produced by pressed air, and friction force. Different characters of damping force, air rebound force and friction force can be applied to seperate each force from others. A massive produced air filling shock absorber is adopted for the validation. The statistic test is used to get the displacement-force curves. The data are used as the input of separation calculation. Then the tests are carried out again to obtain the force data without air rebound force. The force without air rebound is compared to the data derived from the former tests with the separation method. The result shows that this method can separate the damping force and the air elastic force.展开更多
基金funded by the Fund Project of China Academy of Railway Sciences Corporation Limited[Grant No.2022YJ194,2023YJ254].
文摘Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.
文摘In automobile wheel application, a test rig is vital and used to simulate conditions of the wheel in service in order to affirm the safety and reliability of the wheel. The present work designed a test rig for measuring axial strains in automobile wheel. The wheel used was a five-arm wheel (6JX14H2;ET 42) and Tyre (175 × 65 R 14). Experimental (EXP) test was carried out, with a radial load of 4750 N and inflation pressure of 0.3 MPa, to measure the axil strains which were converted to maximum principal strain values and, compared with data from Finite Element Analysis (FEA) using Creo-Element/Pro 5.0 at wheel’s contact angles of 90 degree (FEA 90 deg), 40 degree (FEA 40 deg) and 30.25 degree (FEA 30.25 deg), respectively. Results show that at the wheel’s point of contact with the ground, maximum principal strain values were highest at the inboard bead seat with a value of about 5.69 × 10<sup>-4</sup> mm/mm, followed by the values at the well of about 5.66 × 10<sup>-4</sup> mm/mm. The value at the outboard bead seat was least at about 2.22 × 10<sup>-4</sup> mm/mm, which was due to the presence of spikes at this location that tends to resist imposed radial loads. However, the highest mean maximum principal strain values at the locations of inboard, well and outboard, were about 2.11 × 10<sup>-4</sup> mm/mm, 3.78 × 10<sup>-4</sup> mm/mm and .99 × 10<sup>-4</sup> mm/mm, respectively. With the highest single value of about 5.69 × 10<sup>-4</sup> mm/mm, the inboard bead seat was the most strained location of the wheel. Overall results showed that all values of maximum principal strains were below the threshold value of about 1 × 10<sup>-2</sup> mm/mm. The values obtained for EXP and FEA could be said to be in close agreement when compared with the threshold value. With this in mind, the rig is recommended for use in related experimental procedures.
文摘This paper describes the force acting the assembly of the jumbo rig for tunneling.The finite element analysis is used to calculate this machine structure on its different working states.
文摘Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.
文摘Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.
基金Supported by the Youth Innovation Fund of China Coal Research Institute(2007QN50)
文摘The existing hydraulic system always have problems of temperature rise,runningstability and anti-interference of the implementation components,reliability of hydrauliccomponents,maintenance difficulties,and other issues.With high efficiency,energysaving,reliability,easy operating,stable running,anti-interference ability,and other advantages,the load-sensitive hydraulic system is more suitable for coal mine all-hydrauliccore rig.Therefore,for the technical development of the coal mine all-hydraulic core rig,the load-sensitive technology employed by the rig should be of great significance.
基金The authors greatly appreciate the financial support from the Rail Manufacturing Cooperative Research Centre(funded jointly by participating rail organizations and the Australian Federal Government’s Business Cooperative Research Centres Program)through Project R1.7.1-“Estimation of adhesion conditions between wheels and rails for the development of advanced braking control systems.”Tim McSweeney,Adjunct Research Fellow,Centre for Railway Engineering is thankfully acknowledged for his assistance with proofreading.
文摘In wheel–rail adhesion studies,most of the test rigs used are simplified designs such as a single wheel or wheelset,but the results may not be accurate.Alternatively,representing the complex system by using a full vehicle model provides accurate results but may incur complexity in design.To trade off accuracy over complexity,a bogie model can be the optimum selection.Furthermore,only a real-time model can replicate its physical counterpart in the time domain.Developing such a model requires broad expertise and appropriate software and hardware.A few published works are available which deal with real-time modeling.However,the influence of the control system has not been included in those works.To address these issues,a real-time scaled bogie test rig including the control system is essential.Therefore,a 1:4 scaled bogie roller rig is developed to study the adhesion between wheel and roller contact.To compare the performances obtained from the scaled bogie test rig and to expand the test applications,a numerical simulation model of that scaled bogie test rig is developed using Gensys multibody software.This model is the complete model of the test rig which delivers more precise results.To exactly represent the physical counterpart system in the time domain,a real-time scaled bogie test rig(RT-SBTR)is developed after four consecutive stages.Then,to simulate the RT-SBTR to solve the internal state equations and functions representing the physical counterpart system in rigs used are simplified designs such as a single wheel or wheelset,but the results may not be accurate.Alternatively,representing the complex system by using a full vehicle model provides accurate results but may incur complexity in design.To trade off accuracy over complexity,a bogie model can be the optimum selection.Furthermore,only a real-time model can replicate its physical counterpart in the time domain.Developing such a model requires broad expertise and appropriate software and hardware.A few published works are available which deal with real-time modeling.However,the influence of the control system has not been included in those works.To address these issues,a real-time scaled bogie test rig including the control system is essential.Therefore,a 1:4 scaled bogie roller rig is developed to study the adhesion between wheel and roller contact.To compare the performances obtained from the scaled bogie test rig and to expand the test applications,a numerical simulation model of that scaled bogie test rig is developed using Gensys multibody software.This model is the complete model of the test rig which delivers more precise results.To exactly represent the physical counterpart system in the time domain,a real-time scaled bogie test rig(RT-SBTR)is developed after four consecutive stages.Then,to simulate the RT-SBTR to solve the internal state equations and functions representing the physical counterpart system in equal or less than actual time,the real-time simulation environment is prepared in two stages.To such end,the computational time improved from 4 times slower than real time to 2 times faster than real time.Finally,the real-time scaled bogie model is also incorporated with the braking control system which slightly reduces the computational performances without affecting real-time capability.
文摘The consequences of ship collisions with an oil rig, offshore installation or platform can be far more expensive in relation to safety, environment and costs of damage. The damage due to a single incident of an Oil Rig Collision can be catastrophic due to the number of people on board and the added risk of explosion. However, the existing rules and regulations of collisions prevention are insufficient. The purpose of this article is to critically evaluate the risk of ships collisions with offshore platforms and installations and therefore propose an international regulation for the preventions of this type of collisions.
文摘Research has been done on an energy-saving type of hydraulic workover rig. This rig can recover and reuse the potential energy which is released by the pipestring when lowered, and the equipped power of this rig is only one third of an ordinary rig. The structure and theory of this rig are introduced. The mathematical model of lowering the pipestring is established and a simulation analysis is conducted. Through simulation some conclusions are obtained: The lighter the pipestring is, the less velocity of lowering the pipestring is; The smaller the throttle valve path area is, the less velocity of lowering the pipestring is; Different air vessel volumes have no evident effect on the pipestring lowering velocity. The actual measure results prove that the simulation results are right. Finally, the energy-saving effect of this rig is proved by the field test results.
文摘Large diameter fans with low solidity are widely used in automotive application for engine cooling. Their designs with small chord length help reducing the torque on the electrical motor and providing a good aerodynamic compromise between several operating conditions, some of these being at high flow rate. Their global performances are measured according to the ISO standard DP 5801, which allows comparison of results from different facilities. However, some variations in global performances are observed when considering results from two different test rigs. On a fan selected for the purpose of this study, up to 6 % of efficiency is lost on the worst case. As efficiency is more than ever a key factor to select a component, some experimental and numerical investigations were conducted to analyze the fan behavior on each facility. Two sets of measurement and simulation are performed and compared. Geometries considered for the domain of computation include the test rig plenum, the torquemeter, the ground and a large domain for the atmospheric conditions. The exact fan geometry with tip clearance and under-hub ribs is also considered. Numerical results show a good agreement with experiment in both cases when convergence is reached and for low flow rate when computations are switched to unsteady mode. Comparisons show that simulations are able to capture the different fan behaviors depending on the confguration and those efficiency losses previously observed are correctly predicted. These results are further analyzed to perform some post-processing. Blade loading remains identical for both cases but disparities appear in the wake and its interaction with the surrounding. Tiny details that are often neglected during experiment and/or simulation appear to be the cause of slight variations. Position of the torquemeter and shape of the plenum are among the parameters that various and that have cumulative effects. Efficiency being a ration of pressure and torque, variations are rather important. Finally, these results are discussed in terms of rules for conception and a new geometry less sensible to loss of efficiency is proposed.
文摘A separation method is proposed to design and improve shock absorber according to the characteristics of each force. The method is validated by rig test. The force data measured during rig test is the resultant force of damping force, rebound force produced by pressed air, and friction force. Different characters of damping force, air rebound force and friction force can be applied to seperate each force from others. A massive produced air filling shock absorber is adopted for the validation. The statistic test is used to get the displacement-force curves. The data are used as the input of separation calculation. Then the tests are carried out again to obtain the force data without air rebound force. The force without air rebound is compared to the data derived from the former tests with the separation method. The result shows that this method can separate the damping force and the air elastic force.