This study presents a numerical analysis of three-dimensional steady laminar flow in a rectangular channel with a 180-degree sharp turn. The Navier-Stokes equations are solved by using finite difference method for Re ...This study presents a numerical analysis of three-dimensional steady laminar flow in a rectangular channel with a 180-degree sharp turn. The Navier-Stokes equations are solved by using finite difference method for Re = 900. Three-dimensional streamlines and limiting streamlines on wall surface are used to analyze the three-dimensional flow characteristics. Topological theory is applied to limiting streamlines on inner walls of the channel and two-dimensional streamlines at several cross sections. It is also shown that the flow impinges on the end wall of turn and the secondary flow is induced by the curvature in the sharp turn.展开更多
This study provided a new configuration of the 180-deg round turned channel with a perforated divider, as well as numerically investigated the effect of perforations, including the diameter of perforation and the ange...This study provided a new configuration of the 180-deg round turned channel with a perforated divider, as well as numerically investigated the effect of perforations, including the diameter of perforation and the angel of perforation, on the fluid flow and heat transfer. The numerical results appeared in good agreement with previous experimental data under the same operating conditions. The results indicated that large size and positive angle of perforation changed the fluid flow pattern and the local Nusselt-number distribution fundamentally. It is noteworthy that a more uniform distribution of Nusselt-number was achieved by increasing the diameter of perforation.展开更多
This paper presents vehicle localization and tracking methodology to utilize two-channel LiDAR data for turning movement counts. The proposed methodology uniquely integrates a K-means clustering technique, an inverse ...This paper presents vehicle localization and tracking methodology to utilize two-channel LiDAR data for turning movement counts. The proposed methodology uniquely integrates a K-means clustering technique, an inverse sensor model, and a Kalman filter to obtain the final trajectories of an individual vehicle. The objective of applying K-means clustering is to robustly differentiate LiDAR data generated by pedestrians and multiple vehicles to identify their presence in the LiDAR’s field of view (FOV). To localize the detected vehicle, an inverse sensor model was used to calculate the accurate location of the vehicles in the LiDAR’s FOV with a known LiDAR position. A constant velocity model based Kalman filter is defined to utilize the localized vehicle information to construct its trajectory by combining LiDAR data from the consecutive scanning cycles. To test the accuracy of the proposed methodology, the turning movement data was collected from busy intersections located in Newark, NJ. The results show that the proposed method can effectively develop the trajectories of the turning vehicles at the intersections and has an average accuracy of 83.8%. Obtained R-squared value for localizing the vehicles ranges from 0.87 to 0.89. To measure the accuracy of the proposed method, it is compared with previously developed methods that focused on the application of multiple-channel LiDARs. The comparison shows that the proposed methodology utilizes two-channel LiDAR data effectively which has a low resolution of data cluster and can achieve acceptable accuracy compared to multiple-channel LiDARs and therefore can be used as a cost-effective measure for large-scale data collection of smart cities.展开更多
Field observations illustrated that, right-turn vehicles stopped at various positions when proceeding within the right-turn lanes, while some of them trespassed on the crosswalks with multiple stops. In this case, ped...Field observations illustrated that, right-turn vehicles stopped at various positions when proceeding within the right-turn lanes, while some of them trespassed on the crosswalks with multiple stops. In this case, pedestrians and bikes (ped/bike) are encountered unsmooth and hazardous crossings when right-turn vehicles encroaching their lanes. Meanwhile, this also causes conflicts between right-turn and through vehicles at the crossing street. To better protect ped/bike at crossings with right-turn vehicles, this paper proposes a concept of “right-turn vehicle box” (RTVB) as a supplemental treatment within right-turn lanes. Sight distance, geometric conditions, and behaviors of vehicles and ped/bike are key factors to consider so as to set up the criteria and to design the suitable treatment. A case study was conducted at an intersection pair in Houston, USA to shape the idea of RTVB, together with driving simulator tests under relevant scenarios. The preliminary crosscheck examination shows that the right-turn vehicle box could possibly provide ped/ bike with smoother and safer crossings. In the interim, the safety and efficiency of right-turn operations were also improved. To further validate the effects, implementation studies should be conducted before the RTVB can make its debut in practice. Future works will focus on the complete warrants and design details of this treatment. Moreover, the concept of “vehicle box” could also be transplanted to other places where turning movement(s) needs assistance or improvements.展开更多
舟山市鱼山绿色石化基地是我国七大石化基地的重要组成部分,也是打造全国首个绿色发展标杆的石化基地,液化天然气(LNG)码头建设对基地发展十分重要。通过挖掘水域优势,将LNG船舶移动安全区设定为前1 n mile、后0.5 n mile、左右各1倍船...舟山市鱼山绿色石化基地是我国七大石化基地的重要组成部分,也是打造全国首个绿色发展标杆的石化基地,液化天然气(LNG)码头建设对基地发展十分重要。通过挖掘水域优势,将LNG船舶移动安全区设定为前1 n mile、后0.5 n mile、左右各1倍船长(约300 m),给对向船舶预留了约360 m宽的通道,解决了LNG船舶航行过程中对向封控的问题。通过使用代入法,分区段定量分析LNG船舶进出港过程中需要协调避让的船舶数量,形成LNG码头建设后的交通场景。通过对沪舟通道岱山北航道桥、LNG船舶和周围水域的三维建模,采用操纵试验手段,得出LNG专用航道转向点与跨海大桥的安全间距不宜小于6倍船长。展开更多
为科学评价信号交叉口右转渠化岛设置给非机动车过街带来的交通安全风险,实地采集了南昌市5个信号交叉口的视频,并提取了各交叉口右转渠化岛区域机非冲突数据、交叉口几何设计特征、交叉口渠化方式以及交通流特性等数据;采用改进型距离...为科学评价信号交叉口右转渠化岛设置给非机动车过街带来的交通安全风险,实地采集了南昌市5个信号交叉口的视频,并提取了各交叉口右转渠化岛区域机非冲突数据、交叉口几何设计特征、交叉口渠化方式以及交通流特性等数据;采用改进型距离碰撞时间(time to collision,TTC)对交通冲突进行判定,共得到304起冲突事件;基于贝叶斯方法构建了考虑不同交叉口间异质性的随机效应冲突模型,对比了固定效应与随机效应负二项模型的拟合优度并分析了显著影响因素;基于随机效应模型,确定了期望机非冲突数计算公式,绘制了不同交通流情况下信号交叉口渠化岛设置标准曲线并提供了案例说明。研究表明:相比于固定效应模型,随机效应模型对机非冲突有更好的拟合效果;相比于无渠化岛交叉口,软渠化岛和硬渠化岛的设置会导致交通冲突分别增加38%和61.4%;右转机动车交通量、过街非机动车交通量和非机动车违法行驶数量每增加1%,将导致机非冲突分别增加0.85%、0.44%和0.18%;右转机动车平均速度每增加1%,将导致机非冲突减少2.5%。研究成果为定量化分析交通冲突影响要素提供了有效思路,可为右转渠化岛交通设计提供理论支撑。展开更多
文摘This study presents a numerical analysis of three-dimensional steady laminar flow in a rectangular channel with a 180-degree sharp turn. The Navier-Stokes equations are solved by using finite difference method for Re = 900. Three-dimensional streamlines and limiting streamlines on wall surface are used to analyze the three-dimensional flow characteristics. Topological theory is applied to limiting streamlines on inner walls of the channel and two-dimensional streamlines at several cross sections. It is also shown that the flow impinges on the end wall of turn and the secondary flow is induced by the curvature in the sharp turn.
文摘This study provided a new configuration of the 180-deg round turned channel with a perforated divider, as well as numerically investigated the effect of perforations, including the diameter of perforation and the angel of perforation, on the fluid flow and heat transfer. The numerical results appeared in good agreement with previous experimental data under the same operating conditions. The results indicated that large size and positive angle of perforation changed the fluid flow pattern and the local Nusselt-number distribution fundamentally. It is noteworthy that a more uniform distribution of Nusselt-number was achieved by increasing the diameter of perforation.
文摘This paper presents vehicle localization and tracking methodology to utilize two-channel LiDAR data for turning movement counts. The proposed methodology uniquely integrates a K-means clustering technique, an inverse sensor model, and a Kalman filter to obtain the final trajectories of an individual vehicle. The objective of applying K-means clustering is to robustly differentiate LiDAR data generated by pedestrians and multiple vehicles to identify their presence in the LiDAR’s field of view (FOV). To localize the detected vehicle, an inverse sensor model was used to calculate the accurate location of the vehicles in the LiDAR’s FOV with a known LiDAR position. A constant velocity model based Kalman filter is defined to utilize the localized vehicle information to construct its trajectory by combining LiDAR data from the consecutive scanning cycles. To test the accuracy of the proposed methodology, the turning movement data was collected from busy intersections located in Newark, NJ. The results show that the proposed method can effectively develop the trajectories of the turning vehicles at the intersections and has an average accuracy of 83.8%. Obtained R-squared value for localizing the vehicles ranges from 0.87 to 0.89. To measure the accuracy of the proposed method, it is compared with previously developed methods that focused on the application of multiple-channel LiDARs. The comparison shows that the proposed methodology utilizes two-channel LiDAR data effectively which has a low resolution of data cluster and can achieve acceptable accuracy compared to multiple-channel LiDARs and therefore can be used as a cost-effective measure for large-scale data collection of smart cities.
文摘Field observations illustrated that, right-turn vehicles stopped at various positions when proceeding within the right-turn lanes, while some of them trespassed on the crosswalks with multiple stops. In this case, pedestrians and bikes (ped/bike) are encountered unsmooth and hazardous crossings when right-turn vehicles encroaching their lanes. Meanwhile, this also causes conflicts between right-turn and through vehicles at the crossing street. To better protect ped/bike at crossings with right-turn vehicles, this paper proposes a concept of “right-turn vehicle box” (RTVB) as a supplemental treatment within right-turn lanes. Sight distance, geometric conditions, and behaviors of vehicles and ped/bike are key factors to consider so as to set up the criteria and to design the suitable treatment. A case study was conducted at an intersection pair in Houston, USA to shape the idea of RTVB, together with driving simulator tests under relevant scenarios. The preliminary crosscheck examination shows that the right-turn vehicle box could possibly provide ped/ bike with smoother and safer crossings. In the interim, the safety and efficiency of right-turn operations were also improved. To further validate the effects, implementation studies should be conducted before the RTVB can make its debut in practice. Future works will focus on the complete warrants and design details of this treatment. Moreover, the concept of “vehicle box” could also be transplanted to other places where turning movement(s) needs assistance or improvements.
文摘舟山市鱼山绿色石化基地是我国七大石化基地的重要组成部分,也是打造全国首个绿色发展标杆的石化基地,液化天然气(LNG)码头建设对基地发展十分重要。通过挖掘水域优势,将LNG船舶移动安全区设定为前1 n mile、后0.5 n mile、左右各1倍船长(约300 m),给对向船舶预留了约360 m宽的通道,解决了LNG船舶航行过程中对向封控的问题。通过使用代入法,分区段定量分析LNG船舶进出港过程中需要协调避让的船舶数量,形成LNG码头建设后的交通场景。通过对沪舟通道岱山北航道桥、LNG船舶和周围水域的三维建模,采用操纵试验手段,得出LNG专用航道转向点与跨海大桥的安全间距不宜小于6倍船长。
文摘为科学评价信号交叉口右转渠化岛设置给非机动车过街带来的交通安全风险,实地采集了南昌市5个信号交叉口的视频,并提取了各交叉口右转渠化岛区域机非冲突数据、交叉口几何设计特征、交叉口渠化方式以及交通流特性等数据;采用改进型距离碰撞时间(time to collision,TTC)对交通冲突进行判定,共得到304起冲突事件;基于贝叶斯方法构建了考虑不同交叉口间异质性的随机效应冲突模型,对比了固定效应与随机效应负二项模型的拟合优度并分析了显著影响因素;基于随机效应模型,确定了期望机非冲突数计算公式,绘制了不同交通流情况下信号交叉口渠化岛设置标准曲线并提供了案例说明。研究表明:相比于固定效应模型,随机效应模型对机非冲突有更好的拟合效果;相比于无渠化岛交叉口,软渠化岛和硬渠化岛的设置会导致交通冲突分别增加38%和61.4%;右转机动车交通量、过街非机动车交通量和非机动车违法行驶数量每增加1%,将导致机非冲突分别增加0.85%、0.44%和0.18%;右转机动车平均速度每增加1%,将导致机非冲突减少2.5%。研究成果为定量化分析交通冲突影响要素提供了有效思路,可为右转渠化岛交通设计提供理论支撑。