Let X be a compact metric space and T:X-→X be continuous.Let h*(T)be the supremum of topological sequence entropies of T over all the subsequences of Z+and S(X)be the set of the values h*(T)for all the continuous map...Let X be a compact metric space and T:X-→X be continuous.Let h*(T)be the supremum of topological sequence entropies of T over all the subsequences of Z+and S(X)be the set of the values h*(T)for all the continuous maps T on X.It is known that{0}■S(X)■{0,log 2,log 3,...}∪{∞}.Only three possibilities for S(X)have been observed so far,namely S(X)={0},S(X)={0,log 2,∞}and S(X)={0,log 2,log 3,...}∪{∞}.In this paper we completely solve the problem of finding all possibilities for S(X)by showing that in fact for every set{0}?A?{0,log 2,log 3,...}∪{∞}there exists a one-dimensional continuum XAwith S(XA)=A.In the construction of XAwe use Cook continua.This is apparently the first application of these very rigid continua in dynamics.We further show that the same result is true if one considers only homeomorphisms rather than continuous maps.The problem for group actions is also addressed.For some class of group actions(by homeomorphisms)we provide an analogous result,but in full generality this problem remains open.展开更多
基金supported by the Slovak Research and Development Agency (Grant No. APVV-15-0439)by VEGA (Grant No. 1/0786/15)+1 种基金supported by National Natural Science Foundation of China (Grant Nos. 11371339 and 11431012)supported by National Natural Science Foundation of China (Grant Nos. 11871188 and 11671094)
文摘Let X be a compact metric space and T:X-→X be continuous.Let h*(T)be the supremum of topological sequence entropies of T over all the subsequences of Z+and S(X)be the set of the values h*(T)for all the continuous maps T on X.It is known that{0}■S(X)■{0,log 2,log 3,...}∪{∞}.Only three possibilities for S(X)have been observed so far,namely S(X)={0},S(X)={0,log 2,∞}and S(X)={0,log 2,log 3,...}∪{∞}.In this paper we completely solve the problem of finding all possibilities for S(X)by showing that in fact for every set{0}?A?{0,log 2,log 3,...}∪{∞}there exists a one-dimensional continuum XAwith S(XA)=A.In the construction of XAwe use Cook continua.This is apparently the first application of these very rigid continua in dynamics.We further show that the same result is true if one considers only homeomorphisms rather than continuous maps.The problem for group actions is also addressed.For some class of group actions(by homeomorphisms)we provide an analogous result,but in full generality this problem remains open.