Carbon graphite is a crystalline form of carbon consisting of layers of hexagonal carbon atoms arranged in a two-dimensional “graphene” structure. Graphene layers are stacked on top of each other, forming a three-di...Carbon graphite is a crystalline form of carbon consisting of layers of hexagonal carbon atoms arranged in a two-dimensional “graphene” structure. Graphene layers are stacked on top of each other, forming a three-dimensional structure with a high degree of anisotropy. The carbon atoms within each layer are linked together by strong covalent bonds, creating a strong, stable lattice structure. However, the layers themselves are held together by weak van der Waals forces, enabling them to slide easily over each other. The properties of carbon graphite are highly dependent on the orientation and alignment of the graphene layers. When the layers are aligned parallel to each other, the material exhibits high strength and stiffness along the alignment direction, but is weaker and more flexible in other directions. Carbon graphite is used in a variety of applications where high strength, rigidity and electrical conductivity are required. Some common applications include electrical contacts, electric motor brushes, and as a structural material in aerospace and defense applications. The aim of our work is to describe the structure of graphite, its physical and chemical properties and its applications.展开更多
Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outb...Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outboard mid-plane and thirty-two vertical ports on the top and bottom are designed for diagnostics, plasma heating, current driving, vacuum pumping and gas puffing. Bellows on these port necks are used for flexible components to absorb the relative displacement in radial and vertical directions due to external load, thermal expansion or contrac-tion and assembly tolerance, and also used for isolation of mechanical vibration. For the support system of vacuum vessel it should be not only strong enough to withstand forces acting on the vessel interior components and the vessel itself due to the dead weight and electromagnetic inter-actions during plasma disruption, but also sufficiently flexible to be suited to thermal expansion during baking. In order to solve this contradiction a new kind of low rigid support has been designed, which has a perfectly rigid in vertical direction and perfectly soft in radial direction. Some three-dimension finite element COSMOS models were performed to analyze their structural strength, stiffness and fatigue life, with an emphasis on the static stress analysis. The load spectra during vacuum vessel operation were also simulated on these models in the view of fatigue design. It was confirmed that the bellows and support had sufficient strength in the designed range of the load conditions. The results showed that the peak stress on bellows was 87 MPa and on the support system was 97 MPa. Now all kinds of bellows and support system have been designed. In order to accumulate some engineering experiences and probe into some molding die and welding technologies, prototypical bellows and support system have been fabricated. At the same time a mechanical testing apparatus was designed for proof tests on the prototypical bellows and support to verify their functional and structure capability. The experimental data indicated that the re-sults of finite element analysis were coincident with experimental test results. It has been proved that the present vacuum vessel's bellows and support system are reasonable and feasible.展开更多
This paper deals with the structure of air-jet textured yarn(ATY),especilly its core structurein dedail.It is described that overfeed of supply yarn does influence the ATY structure.Then thebending rigidity of ATY has...This paper deals with the structure of air-jet textured yarn(ATY),especilly its core structurein dedail.It is described that overfeed of supply yarn does influence the ATY structure.Then thebending rigidity of ATY has been measured and analyzed.The results shows that various supplyyarns affect the core structure and bending rigidity of ATY.展开更多
Hamiltonian structure of a rigid body in a circular orbit is established in this paper. With the reduction technique, the Hamiltonian structure of a rigid body in a circular orbit is derived from Lie-Poisson structure...Hamiltonian structure of a rigid body in a circular orbit is established in this paper. With the reduction technique, the Hamiltonian structure of a rigid body in a circular orbit is derived from Lie-Poisson structure of semidirect product, and Hamiltonian is derived from Jacobi's integral. The above method can be generalized to establish the Hamiltonian structure of a rigid body with a flexible attachment in a circular or- bit. At last, an example of stability analysis is given.展开更多
In order to meet the urgent need for diversified and multi-functional deployable antennas in many major national aerospace projects,such as interstellar exploration,the fourth phase of lunar exploration project,and th...In order to meet the urgent need for diversified and multi-functional deployable antennas in many major national aerospace projects,such as interstellar exploration,the fourth phase of lunar exploration project,and the industrial application of Bei Dou,a deployable antenna structure composed of hexagonal prism and pentagonal prism modules is proposed.Firstly,the arrangement and combination rules of pentagonal prism and hexagonal prism modules on the plane were analyzed.Secondly,the spatial geometric model of the deployable antenna composed of pentagonal prism and hexagonal prism modules was established.The influence of module size on the antenna shape was then analyzed,and the kinematic model of the deployable antenna established by coordinate transformation.Finally,the above model was verified using MATLAB software.The simulation results showed that the proposed modular deployable antenna structure can realize accurate connection between modules,complete the expected deployment and folding functional requirements.It is hoped that this research can provide reference for the basic research and engineering application of deployable antennas in China.展开更多
Pose and structure estimation from a single image is a fundamental problem in machine vision and multiple sensor fusion and integration. In this paper we propose using rigid constraints described in different coordina...Pose and structure estimation from a single image is a fundamental problem in machine vision and multiple sensor fusion and integration. In this paper we propose using rigid constraints described in different coordinate frames to iteratively estimate structural and camera pose parameters. Using geometric properties of reflected correspondences we put forward a new concept, the reflected pole of a rigid transformation. The reflected pole represents a general analysis of transformations that can be applied to both 2D and 3D transformations. We demonstrate how the concept is applied to calibration by proposing an iterative method to estimate the structural parameters of objects. The method is based on a coarse-to-fine strategy in which initial estimation is obtained through a classical linear algorithm which is then refined by iteration. For a comparative study of performance, we also implemented an extended motion estimation algorithm (from 2D-2D to 3D-2D case) based on epipolar geometry.展开更多
Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerou...Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solu- tions available. The soil-structure interaction problem is one of the most classic problems connecting the two dis- ciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and super- structure. This interaction effect is important across many structure, foundation, and subgrade types but is most pro- nounced when a rigid superstructure is founded on a rela- tively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the super- structure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half- space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple asuperstructure from its substructure resting on a shaking half-space.展开更多
Fluid-structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for nume...Fluid-structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for numerical simulation based on computational fluid dynamics and nonlinear finite element analysis methods. The typical results of the numerical simulation and wind tunnel experiment, including the overall lift and deformation, are in good agreement with each other. The results obtained indicate that the effect of fluid-structure interaction is noticeable and should be considered for non-rigid airships. Flow- induced deformation can further intensify the upward lift force and pitching moment, which can lead to a large deformation. Under a wind speed of 15 m/s, the lift force of the non-rigid model is increased to approximatelv 60% compared with that of the rigid model under a high angle of attack.展开更多
To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatic...To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.展开更多
An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and extern...An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.展开更多
Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient ...Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.展开更多
As one of the oldest creatures on the earth, the tortoises have formed a nearly perfect shell structure after millions of years of evolution In this paper, Chinese tortoise shell is studied. Firstly, the scanni...As one of the oldest creatures on the earth, the tortoises have formed a nearly perfect shell structure after millions of years of evolution In this paper, Chinese tortoise shell is studied. Firstly, the scanning model of the tortoise shell is established by means of computer tomography (CT) scanning technology and MIMICS software. Secondly, the solid model of three-dimensional structure of the tortoise shell is constructed by using geomagic studio reverse engineering software. Afterwards, the compression numerical simulation of the tortoise shell structure under low strain rate is conducted with the help of finite element software LS-DYNA. Finally, load-bearing characteristics of the tortoise shell structure and dome-shaped structure are compared and analyzed. The results show that compared withthe dome-shaped structure with the same volume, tortoise shell structure has a higher structural rigidity and can withstand higher pressure. Therefore, tortoise shell structure provide some reference to the design of armored vehicles, sheltersand other types of thin shell structures.展开更多
The morphology, bending property and secondary structure estimation of dog hair were investigated by scanning electron microscope( SEM),fiber compression bending analyzer,fiber frictional coefficient tester and Fourie...The morphology, bending property and secondary structure estimation of dog hair were investigated by scanning electron microscope( SEM),fiber compression bending analyzer,fiber frictional coefficient tester and Fourier transform infrared spectroscopy( FTIR). The SEM micrograph of hair indicated guard hair( GH),intermediate hair( IH) and underhair( UH) from dog hair fibers displayed considerable differences in the diameter,length,scale shape and medulla. In addition,the bending property of fibers were related to the diameter of fibers and the percentage and structure of medulla. The UH had the greatest frictional coefficient,while the guard hair had the largest bending rigidity in three kinds of hairs. The analysis of amide I region implied that there was an apparent variety in the secondary structure of hairs,mainly the percentage of α-helix and β-pleated sheet and β-turn structure. The X-ray diffraction results showed that the crystallinity of the UH was the lowest in the three kinds of fibers. The tensile behaviors of dog hair also indicated that the increase of β-pleated and β-turn structure caused the increase of the breaking strength.展开更多
The generalized Fourier-series method was used to derive the impact responses formula of an unrestrained planar frame structure when subjected to an impact of a moving rigid-body. By using these formula, the analytic ...The generalized Fourier-series method was used to derive the impact responses formula of an unrestrained planar frame structure when subjected to an impact of a moving rigid-body. By using these formula, the analytic solutions of dynamic responses of the contact-impact system can be obtained. During the derivation, the momentum sum of elastic responses of the contact-impact system is demonstrated to be zero. From the derivation, it is seen that the modal method can also be used to solve this kind of impact problem.展开更多
In selecting rational types of underground structures resisting explosion,in order to improve stress states of the structural section and make full use of material strength of each part of the section,the research met...In selecting rational types of underground structures resisting explosion,in order to improve stress states of the structural section and make full use of material strength of each part of the section,the research method of composite structures is presented. Adopting the analysis method of micro-section free body,equilibrium equations,constraint equations and deformation coordination equations are given. Making use of the concept of generalized work and directly introducing Lagrange multiplier specific in physical meaning,the validity of the constructed generalized functional is proved by using variation method. The rational rigidity matching relationship of composite structure section is presented through example calculations.展开更多
The characteristics of a disturbed soil-structure interface were studied based on the variation regularities of the disturbed soil within its mining subsidence area using direct shear tests.The effects of the initial ...The characteristics of a disturbed soil-structure interface were studied based on the variation regularities of the disturbed soil within its mining subsidence area using direct shear tests.The effects of the initial moisture content on the shear strength parameters of the soil-structure interfaces were analyzed.The results indicate that the cohesion of the interface initially increased and then decreased as the initial moisture content increased.In addition,the friction angle of the interface decreased as the initial moisture content increased.A constitutive model of the disturbed soil-structure interface,a rigid-plastic model based on the initial void ratio and saturability(VSRP) model,was established based on the results.In order to validate this model,a finite element analysis of DRS-1 direct shear tests was conducted.The finite element model calculations coincided with the results of the DRS-1 direct shear tests.The proposed model also reflected the nonlinear features of the soil-structure interface.展开更多
The low spatial charge-storage density of porous carbons greatly limits volumetric performance in electrochemical capacitors.An increase of charge-storage density requires structural refinements to balance the trade-o...The low spatial charge-storage density of porous carbons greatly limits volumetric performance in electrochemical capacitors.An increase of charge-storage density requires structural refinements to balance the trade-offs between the porosity and density of materials,but the limited mechanical properties of carbons usually fail to withstand effective densifying processes and obtain an ideal pore structure.Herein,we design the stiffened graphene of superior bending rigidity,enabling the fine adjustments of pore structure to maximize the volumetric capacitance for the graphene-based electrodes.The inplane crumples on graphene sheets are found to contribute largely to the bending rigidity,which is useful to control the structural evolution and maintain sufficient ion-accessible surface area during the assembling process.This makes the capacitance of stiffening activated graphene keep 98%when the electrode density increases by 769%to reach 1.13 g cm^(-3) after mechanical pressure,an excellent volumetric energy density of 98.7 Wh L^(-1) in an ionic-liquid electrolyte is achieved.Our results demonstrate the role of intrinsic material properties on the performance of carbon-based electrodes for capacitive energy storage.展开更多
The self-assembly reactions of M^ⅡCl2 (M = Ni, Co) with the flexible bix ligand [bix = 1,4-bis(imidazole-1-ylmethyl)benzene] yielded a 2D network [N^Ⅲ(bix)2Cl2]n 1 and a 1D chain [Co^Ⅱ(bix)Cl2]n 2. Their cr...The self-assembly reactions of M^ⅡCl2 (M = Ni, Co) with the flexible bix ligand [bix = 1,4-bis(imidazole-1-ylmethyl)benzene] yielded a 2D network [N^Ⅲ(bix)2Cl2]n 1 and a 1D chain [Co^Ⅱ(bix)Cl2]n 2. Their crystal structures have been determined by X-ray single-crystal diffraction analysis. Complex 1 characters a two-dimensional grid-type structure and crystallizes in monoclinic, space group P21/c with a = 7.7231(7), b = 12.7787(9), c = 13.9374(13)A, β = 105.419(4)°, C28H28Cl2N8Ni, Mr = 606.19, Ζ = 2, V = 1326.0(2)A^3, Dc = 1.518 g/cm^3, μ = 0.969 mm^-1, F(000) = 628, R = 0.0429 and wR = 0.0783 for 2503 observed reflections (Ⅰ〉 2σ(Ⅰ)). Compound 2 is a one-dimensional chain and crystallizes in orthorhombic, space group Pbca with a = 11.3696(6), b = 10.2128(6), c = 14.4943(9) (A), C14H14Cl2CoN4, Mr = 368.12, Z = 4, V = 1683.01(17)A^3, Dc = 1.453 g/cm^3, μ = 1.334 mm^-1, F(000) = 748, R = 0.0317 and wR = 0.0800 for 1778 observed reflections (Ⅰ〉 2σ(Ⅰ)). Magnetic properties of the title complexes were also investigated.展开更多
A knot is the joining place between two or more constructive elements in a framework or structure.They have a fundamental importance in the structure,according to their design they will be able to give a geometric con...A knot is the joining place between two or more constructive elements in a framework or structure.They have a fundamental importance in the structure,according to their design they will be able to give a geometric configuration or another to the system and will also absorb certain forces or others.Depending on the movements they allow to the bars,there are rigid knots,articulated knots and slip knots.In this paper a study of cases about rigid knots or embedments used by structural systems so far will be presented.These types of knots prevent the rotation and movement of the constructive elements used for construction.In this paper also a study of cases about the articulated and slip knots used by transformable structural systems so far will be presented.An articulated knot allows the rotation but not the movement of the elements.A slip knot prevents movement in one of the three axes of the reference system,but not in the others,nor in the rotation between the elements.The research is focused on presenting a summary and comparison of rigid knots,articulated knots and slip knots that have been used in the structural design of some architecture.The union systems research will be crucial in this study.The investigation shows an important state of the art that provides technical solutions to apply on novel architectures based on rigid structural systems and articulated and slip structural systems.The research is useful to produce the current constructive solutions based on these constructive systems.展开更多
文摘Carbon graphite is a crystalline form of carbon consisting of layers of hexagonal carbon atoms arranged in a two-dimensional “graphene” structure. Graphene layers are stacked on top of each other, forming a three-dimensional structure with a high degree of anisotropy. The carbon atoms within each layer are linked together by strong covalent bonds, creating a strong, stable lattice structure. However, the layers themselves are held together by weak van der Waals forces, enabling them to slide easily over each other. The properties of carbon graphite are highly dependent on the orientation and alignment of the graphene layers. When the layers are aligned parallel to each other, the material exhibits high strength and stiffness along the alignment direction, but is weaker and more flexible in other directions. Carbon graphite is used in a variety of applications where high strength, rigidity and electrical conductivity are required. Some common applications include electrical contacts, electric motor brushes, and as a structural material in aerospace and defense applications. The aim of our work is to describe the structure of graphite, its physical and chemical properties and its applications.
基金This work was supported by the National Meg-Science Engineering Project of the Chinese Gorernment
文摘Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outboard mid-plane and thirty-two vertical ports on the top and bottom are designed for diagnostics, plasma heating, current driving, vacuum pumping and gas puffing. Bellows on these port necks are used for flexible components to absorb the relative displacement in radial and vertical directions due to external load, thermal expansion or contrac-tion and assembly tolerance, and also used for isolation of mechanical vibration. For the support system of vacuum vessel it should be not only strong enough to withstand forces acting on the vessel interior components and the vessel itself due to the dead weight and electromagnetic inter-actions during plasma disruption, but also sufficiently flexible to be suited to thermal expansion during baking. In order to solve this contradiction a new kind of low rigid support has been designed, which has a perfectly rigid in vertical direction and perfectly soft in radial direction. Some three-dimension finite element COSMOS models were performed to analyze their structural strength, stiffness and fatigue life, with an emphasis on the static stress analysis. The load spectra during vacuum vessel operation were also simulated on these models in the view of fatigue design. It was confirmed that the bellows and support had sufficient strength in the designed range of the load conditions. The results showed that the peak stress on bellows was 87 MPa and on the support system was 97 MPa. Now all kinds of bellows and support system have been designed. In order to accumulate some engineering experiences and probe into some molding die and welding technologies, prototypical bellows and support system have been fabricated. At the same time a mechanical testing apparatus was designed for proof tests on the prototypical bellows and support to verify their functional and structure capability. The experimental data indicated that the re-sults of finite element analysis were coincident with experimental test results. It has been proved that the present vacuum vessel's bellows and support system are reasonable and feasible.
文摘This paper deals with the structure of air-jet textured yarn(ATY),especilly its core structurein dedail.It is described that overfeed of supply yarn does influence the ATY structure.Then thebending rigidity of ATY has been measured and analyzed.The results shows that various supplyyarns affect the core structure and bending rigidity of ATY.
基金The projeet supported by National Natural Science Foundation of China and Aeronautic Science Foundation.
文摘Hamiltonian structure of a rigid body in a circular orbit is established in this paper. With the reduction technique, the Hamiltonian structure of a rigid body in a circular orbit is derived from Lie-Poisson structure of semidirect product, and Hamiltonian is derived from Jacobi's integral. The above method can be generalized to establish the Hamiltonian structure of a rigid body with a flexible attachment in a circular or- bit. At last, an example of stability analysis is given.
文摘In order to meet the urgent need for diversified and multi-functional deployable antennas in many major national aerospace projects,such as interstellar exploration,the fourth phase of lunar exploration project,and the industrial application of Bei Dou,a deployable antenna structure composed of hexagonal prism and pentagonal prism modules is proposed.Firstly,the arrangement and combination rules of pentagonal prism and hexagonal prism modules on the plane were analyzed.Secondly,the spatial geometric model of the deployable antenna composed of pentagonal prism and hexagonal prism modules was established.The influence of module size on the antenna shape was then analyzed,and the kinematic model of the deployable antenna established by coordinate transformation.Finally,the above model was verified using MATLAB software.The simulation results showed that the proposed modular deployable antenna structure can realize accurate connection between modules,complete the expected deployment and folding functional requirements.It is hoped that this research can provide reference for the basic research and engineering application of deployable antennas in China.
文摘Pose and structure estimation from a single image is a fundamental problem in machine vision and multiple sensor fusion and integration. In this paper we propose using rigid constraints described in different coordinate frames to iteratively estimate structural and camera pose parameters. Using geometric properties of reflected correspondences we put forward a new concept, the reflected pole of a rigid transformation. The reflected pole represents a general analysis of transformations that can be applied to both 2D and 3D transformations. We demonstrate how the concept is applied to calibration by proposing an iterative method to estimate the structural parameters of objects. The method is based on a coarse-to-fine strategy in which initial estimation is obtained through a classical linear algorithm which is then refined by iteration. For a comparative study of performance, we also implemented an extended motion estimation algorithm (from 2D-2D to 3D-2D case) based on epipolar geometry.
文摘Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solu- tions available. The soil-structure interaction problem is one of the most classic problems connecting the two dis- ciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and super- structure. This interaction effect is important across many structure, foundation, and subgrade types but is most pro- nounced when a rigid superstructure is founded on a rela- tively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the super- structure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half- space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple asuperstructure from its substructure resting on a shaking half-space.
基金the National Natural Science Foundation of China (11202215 and 11332011)the Youth Innovation Promotion Association of CAS (2015015)
文摘Fluid-structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for numerical simulation based on computational fluid dynamics and nonlinear finite element analysis methods. The typical results of the numerical simulation and wind tunnel experiment, including the overall lift and deformation, are in good agreement with each other. The results obtained indicate that the effect of fluid-structure interaction is noticeable and should be considered for non-rigid airships. Flow- induced deformation can further intensify the upward lift force and pitching moment, which can lead to a large deformation. Under a wind speed of 15 m/s, the lift force of the non-rigid model is increased to approximatelv 60% compared with that of the rigid model under a high angle of attack.
基金Supported by National Natural Science Foundation of China(Grant No.51675180)National Key Basic Research Program of China(973 Program,Grant No.2013CB037503)
文摘To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60674101)the Research Fund for the Doctoral Program of Higher Educa-tion of China(Grant No.20050213010)
文摘An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.
基金The project was financially supported by the National Natural Science Foundation of China
文摘Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.
文摘As one of the oldest creatures on the earth, the tortoises have formed a nearly perfect shell structure after millions of years of evolution In this paper, Chinese tortoise shell is studied. Firstly, the scanning model of the tortoise shell is established by means of computer tomography (CT) scanning technology and MIMICS software. Secondly, the solid model of three-dimensional structure of the tortoise shell is constructed by using geomagic studio reverse engineering software. Afterwards, the compression numerical simulation of the tortoise shell structure under low strain rate is conducted with the help of finite element software LS-DYNA. Finally, load-bearing characteristics of the tortoise shell structure and dome-shaped structure are compared and analyzed. The results show that compared withthe dome-shaped structure with the same volume, tortoise shell structure has a higher structural rigidity and can withstand higher pressure. Therefore, tortoise shell structure provide some reference to the design of armored vehicles, sheltersand other types of thin shell structures.
基金the Fundamental Research Fund for the Central Universities,China(No.2232013D3-02)
文摘The morphology, bending property and secondary structure estimation of dog hair were investigated by scanning electron microscope( SEM),fiber compression bending analyzer,fiber frictional coefficient tester and Fourier transform infrared spectroscopy( FTIR). The SEM micrograph of hair indicated guard hair( GH),intermediate hair( IH) and underhair( UH) from dog hair fibers displayed considerable differences in the diameter,length,scale shape and medulla. In addition,the bending property of fibers were related to the diameter of fibers and the percentage and structure of medulla. The UH had the greatest frictional coefficient,while the guard hair had the largest bending rigidity in three kinds of hairs. The analysis of amide I region implied that there was an apparent variety in the secondary structure of hairs,mainly the percentage of α-helix and β-pleated sheet and β-turn structure. The X-ray diffraction results showed that the crystallinity of the UH was the lowest in the three kinds of fibers. The tensile behaviors of dog hair also indicated that the increase of β-pleated and β-turn structure caused the increase of the breaking strength.
文摘The generalized Fourier-series method was used to derive the impact responses formula of an unrestrained planar frame structure when subjected to an impact of a moving rigid-body. By using these formula, the analytic solutions of dynamic responses of the contact-impact system can be obtained. During the derivation, the momentum sum of elastic responses of the contact-impact system is demonstrated to be zero. From the derivation, it is seen that the modal method can also be used to solve this kind of impact problem.
文摘In selecting rational types of underground structures resisting explosion,in order to improve stress states of the structural section and make full use of material strength of each part of the section,the research method of composite structures is presented. Adopting the analysis method of micro-section free body,equilibrium equations,constraint equations and deformation coordination equations are given. Making use of the concept of generalized work and directly introducing Lagrange multiplier specific in physical meaning,the validity of the constructed generalized functional is proved by using variation method. The rational rigidity matching relationship of composite structure section is presented through example calculations.
基金Project(51274192)supported by National Natural Science Foundation of China
文摘The characteristics of a disturbed soil-structure interface were studied based on the variation regularities of the disturbed soil within its mining subsidence area using direct shear tests.The effects of the initial moisture content on the shear strength parameters of the soil-structure interfaces were analyzed.The results indicate that the cohesion of the interface initially increased and then decreased as the initial moisture content increased.In addition,the friction angle of the interface decreased as the initial moisture content increased.A constitutive model of the disturbed soil-structure interface,a rigid-plastic model based on the initial void ratio and saturability(VSRP) model,was established based on the results.In order to validate this model,a finite element analysis of DRS-1 direct shear tests was conducted.The finite element model calculations coincided with the results of the DRS-1 direct shear tests.The proposed model also reflected the nonlinear features of the soil-structure interface.
基金financial support from the National Natural Science Foundation of China(22078164,and 22079164)the Major Special Projects of the Plan“Science and Technology Innovation 2025”in Ningbo(2019B10045)。
文摘The low spatial charge-storage density of porous carbons greatly limits volumetric performance in electrochemical capacitors.An increase of charge-storage density requires structural refinements to balance the trade-offs between the porosity and density of materials,but the limited mechanical properties of carbons usually fail to withstand effective densifying processes and obtain an ideal pore structure.Herein,we design the stiffened graphene of superior bending rigidity,enabling the fine adjustments of pore structure to maximize the volumetric capacitance for the graphene-based electrodes.The inplane crumples on graphene sheets are found to contribute largely to the bending rigidity,which is useful to control the structural evolution and maintain sufficient ion-accessible surface area during the assembling process.This makes the capacitance of stiffening activated graphene keep 98%when the electrode density increases by 769%to reach 1.13 g cm^(-3) after mechanical pressure,an excellent volumetric energy density of 98.7 Wh L^(-1) in an ionic-liquid electrolyte is achieved.Our results demonstrate the role of intrinsic material properties on the performance of carbon-based electrodes for capacitive energy storage.
基金This work was supported by the State Key Laboratory of Structural Chemistry, the Ministry of Science and Technology of China (001CB108906) the National Natural Science Foundation of China (20333070)
文摘The self-assembly reactions of M^ⅡCl2 (M = Ni, Co) with the flexible bix ligand [bix = 1,4-bis(imidazole-1-ylmethyl)benzene] yielded a 2D network [N^Ⅲ(bix)2Cl2]n 1 and a 1D chain [Co^Ⅱ(bix)Cl2]n 2. Their crystal structures have been determined by X-ray single-crystal diffraction analysis. Complex 1 characters a two-dimensional grid-type structure and crystallizes in monoclinic, space group P21/c with a = 7.7231(7), b = 12.7787(9), c = 13.9374(13)A, β = 105.419(4)°, C28H28Cl2N8Ni, Mr = 606.19, Ζ = 2, V = 1326.0(2)A^3, Dc = 1.518 g/cm^3, μ = 0.969 mm^-1, F(000) = 628, R = 0.0429 and wR = 0.0783 for 2503 observed reflections (Ⅰ〉 2σ(Ⅰ)). Compound 2 is a one-dimensional chain and crystallizes in orthorhombic, space group Pbca with a = 11.3696(6), b = 10.2128(6), c = 14.4943(9) (A), C14H14Cl2CoN4, Mr = 368.12, Z = 4, V = 1683.01(17)A^3, Dc = 1.453 g/cm^3, μ = 1.334 mm^-1, F(000) = 748, R = 0.0317 and wR = 0.0800 for 1778 observed reflections (Ⅰ〉 2σ(Ⅰ)). Magnetic properties of the title complexes were also investigated.
文摘A knot is the joining place between two or more constructive elements in a framework or structure.They have a fundamental importance in the structure,according to their design they will be able to give a geometric configuration or another to the system and will also absorb certain forces or others.Depending on the movements they allow to the bars,there are rigid knots,articulated knots and slip knots.In this paper a study of cases about rigid knots or embedments used by structural systems so far will be presented.These types of knots prevent the rotation and movement of the constructive elements used for construction.In this paper also a study of cases about the articulated and slip knots used by transformable structural systems so far will be presented.An articulated knot allows the rotation but not the movement of the elements.A slip knot prevents movement in one of the three axes of the reference system,but not in the others,nor in the rotation between the elements.The research is focused on presenting a summary and comparison of rigid knots,articulated knots and slip knots that have been used in the structural design of some architecture.The union systems research will be crucial in this study.The investigation shows an important state of the art that provides technical solutions to apply on novel architectures based on rigid structural systems and articulated and slip structural systems.The research is useful to produce the current constructive solutions based on these constructive systems.