In this study a 3D numerical analysis approach is developed to predict the ground vibration around rigid-frame viaducts induced by running high-speed trains. The train-bridge-ground interaction system is divided into ...In this study a 3D numerical analysis approach is developed to predict the ground vibration around rigid-frame viaducts induced by running high-speed trains. The train-bridge-ground interaction system is divided into two subsystems: the train-bridge interaction and the soil-structure interaction. First, the analytical program to simulate bridge vibration with consideration of train-bridge interaction is developed to obtain the vibration reaction forces at the pier bottoms. The high- speed train is described by a multi-DOFs vibration system and the rigid-frame viaduct is modeled with 3D beam elements. Second, applying these vibration reaction forces as input external excitations, the ground vibration is simulated by using a general-purpose program that includes soil-structure interaction effects. The validity of the analytical procedure is confirmed by comparing analytical and experimental results. The characteristics of high-speed train-induced vibrations, including the location of predominant vibration, are clarified. Based on this information a proposed vibration countermeasure using steel strut and new barrier is found effective in reducing train-induced vibrations and it satisfies environmental vibration requirements. The vibration screening efficiency is evaluated by reduction VAL based on 1/3 octave band spectral analysis.展开更多
Seismic microzonation for Almaty city for the first time use probabilistic approach and hazard is expressed in terms of not only macroseismic intensity,but also Peak Ground Acceleration(PGA).To account for the effects...Seismic microzonation for Almaty city for the first time use probabilistic approach and hazard is expressed in terms of not only macroseismic intensity,but also Peak Ground Acceleration(PGA).To account for the effects of local soil conditions,the continual approach proposed by A.S.Aleshin[1,2]was used,in which soil coefficients are a function of the continuously changing seismic rigidity.Soil coefficients were calculated using the new data of geological and geophysical surveys and findings of previous geotechnical studies.The used approach made it possible to avoid using soil categories and a jump change in characteristics of soil conditions and seismic impact.The developed seismic microzonation maps are prepared for further introduction into the normative documents of the Republic of Kazakhstan.展开更多
This publication is a revised version of the previous article. Seismic rigidity method despite its widespread use is the object of harsh criticism from scientists who oppose it to the methodology and results of seismo...This publication is a revised version of the previous article. Seismic rigidity method despite its widespread use is the object of harsh criticism from scientists who oppose it to the methodology and results of seismological registration of earthquakes and microseisms. The article substantiates the original approach based on the solution of the direct problem of seismic microzonation for the model of real soil thickness. A new formula of the seismic rigidity method is proposed, taking into account the lithological, hydrogeological and spectral features of the soil mass, as well as the position of the new seismic scale of the SSI. The formula was tested on the example of the correct description of the features of macroseismic effects on the territory of Leninakan at the Spitak earthquake in 1988. Linear estimates according to the formula of seismic rigidity in the seismic microzoning area represent changes in seismic intensity in the most contrast way. It is shown that the real estimates of seismic intensity under strong seismic effects (by I > VII degree) will not exceed those given by the formula of the seismic rigidity method.展开更多
基金Doctoral Scientific Research Startup Foundation of Wuhan University of Technology,China(No.40120246)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(No.DQJJ201505)
文摘In this study a 3D numerical analysis approach is developed to predict the ground vibration around rigid-frame viaducts induced by running high-speed trains. The train-bridge-ground interaction system is divided into two subsystems: the train-bridge interaction and the soil-structure interaction. First, the analytical program to simulate bridge vibration with consideration of train-bridge interaction is developed to obtain the vibration reaction forces at the pier bottoms. The high- speed train is described by a multi-DOFs vibration system and the rigid-frame viaduct is modeled with 3D beam elements. Second, applying these vibration reaction forces as input external excitations, the ground vibration is simulated by using a general-purpose program that includes soil-structure interaction effects. The validity of the analytical procedure is confirmed by comparing analytical and experimental results. The characteristics of high-speed train-induced vibrations, including the location of predominant vibration, are clarified. Based on this information a proposed vibration countermeasure using steel strut and new barrier is found effective in reducing train-induced vibrations and it satisfies environmental vibration requirements. The vibration screening efficiency is evaluated by reduction VAL based on 1/3 octave band spectral analysis.
基金provided through the Ministry of Education and Sciencecarried out as a part of the project“Development of the Seismic Microzonation Map for the Territory of Almaty City on a New Methodical Base”(state registration No 0115RK02701)funded within the state funding.
文摘Seismic microzonation for Almaty city for the first time use probabilistic approach and hazard is expressed in terms of not only macroseismic intensity,but also Peak Ground Acceleration(PGA).To account for the effects of local soil conditions,the continual approach proposed by A.S.Aleshin[1,2]was used,in which soil coefficients are a function of the continuously changing seismic rigidity.Soil coefficients were calculated using the new data of geological and geophysical surveys and findings of previous geotechnical studies.The used approach made it possible to avoid using soil categories and a jump change in characteristics of soil conditions and seismic impact.The developed seismic microzonation maps are prepared for further introduction into the normative documents of the Republic of Kazakhstan.
文摘This publication is a revised version of the previous article. Seismic rigidity method despite its widespread use is the object of harsh criticism from scientists who oppose it to the methodology and results of seismological registration of earthquakes and microseisms. The article substantiates the original approach based on the solution of the direct problem of seismic microzonation for the model of real soil thickness. A new formula of the seismic rigidity method is proposed, taking into account the lithological, hydrogeological and spectral features of the soil mass, as well as the position of the new seismic scale of the SSI. The formula was tested on the example of the correct description of the features of macroseismic effects on the territory of Leninakan at the Spitak earthquake in 1988. Linear estimates according to the formula of seismic rigidity in the seismic microzoning area represent changes in seismic intensity in the most contrast way. It is shown that the real estimates of seismic intensity under strong seismic effects (by I > VII degree) will not exceed those given by the formula of the seismic rigidity method.