The new methods to determine the zero-energy deformation modes in the hybrid elements and the zero-energy stress modes in their assumed stress fields are presented by the natural deformation modes of the elements. And...The new methods to determine the zero-energy deformation modes in the hybrid elements and the zero-energy stress modes in their assumed stress fields are presented by the natural deformation modes of the elements. And the formula of the additional element deformation rigidity due to additional mode into the assumed stress field is derived. Based on, it is concluded in theory that the zero-energy stress mode cannot suppress the zero-energy deformation modes but increase the extra rigidity to the nonzero-energy deformation modes of the element instead. So they should not be employed to assume the stress field. In addition, the parasitic stress modes will produce the spurious parasitic energy and result the element behaving over rigidity. Thus, they should not be used into the assumed stress field even though they can suppress the zero-energy deformation modes of the element. The numerical examples show the performance of the elements including the zero-energy stress modes or the parasitic stress modes.展开更多
In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar mas...In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.展开更多
The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynami...The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynamic equation and the Jacobian relation of a free-floating space rigid manipulator are established and then inverted to the state equation for control design. Based on the terminal sliding mode control (SMC) technique, a mathematical expression of the terminal sliding surface is proposed. The terminal SMC scheme is then developed for coordinated motion between the base's attitude and the end-effector of the free-floating space manipulator with external disturbance. This proposed control scheme not only guarantees the existence of the sliding phase of the closed-loop system, but also ensures that the output tracking error converges to zero in finite time. In addition, because the initial system state is always at the terminal sliding surface, the control scheme can eliminate reaching phase of the SMC and guarantee global robustness and stability of the closed-loop system. A planar free-floating space rigid manipulator is simulated to verify the feasibility of the proposed control scheme.展开更多
The rigid flexible coupling system with a mass at non-tip position of the flexible beam is studied in this paper. Using the theory about mechanics problems in a non-inertial coordinate sys- tem, the dynamic equations ...The rigid flexible coupling system with a mass at non-tip position of the flexible beam is studied in this paper. Using the theory about mechanics problems in a non-inertial coordinate sys- tem, the dynamic equations of the rigid flexible coupling system with dynamic stiffening are estab- lished. It is clearly elucidated for the first time that, dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. The modeling approach in this paper successfully solves problems of popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical mechanism for dynamic stiffening can' t be offered. First, the mass at non-tip po- sition is incorporated into the continuous dynamic equations of the system by use of the Dirac lunch tion and the Heaviside function. Then, based on the conclusions of orthogonalization about the nor- mal constrained modes, the finite dimensional state space equations suitable for controller design are obtained. The numerical simulation results show that: dynamic stiffening is included in the first-or- der model established in this paper, which indicates the dynamic responses of the rigid flexible cou- pling system with large overall motion accurately. The results also show that the mass has a soften- ing effect on the dynamic behavior of the flexible beam, and the effect would be more obvious when the mass has a larger mass, or lies closer to the tip of the beam.展开更多
A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system,the rigid flexible coupling dynami...A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system,the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystemmodeling framework. It is clearly elucidated for the first time that,dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beamand the transverse vibration deformation of the beam. The modeling approach in this paper successfully avoids problems which are caused by other popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical explanation for dynamic stiffening can't be provided. First,the continuous dynamic models of the flexible beamand the central rigid body are established via structural dynamics and angular momentumtheory respectively. Then,based on the conclusions of orthogonalization about the normal constrained modes,the finite dimensional dynamic model suitable for controller design is obtained. The numerical simulation validations showthat: dynamic stiffening is successfully incorporated into the dynamic characteristics of the first-order model established in this paper,which can indicate the dynamic responses of the rigid flexible coupling system with large overall motion accurately,and has a clear modeling mechanism,concise expressions and a good convergence.展开更多
A robust attitude control methodology is proposed for satellite system with double rotary payloads. The dynamic model is built by the Newton-Euler method and then the dynamic interconneetion between satellite's main ...A robust attitude control methodology is proposed for satellite system with double rotary payloads. The dynamic model is built by the Newton-Euler method and then the dynamic interconneetion between satellite's main body and payloads is described precisely. A nonlinear disturbance observer is designed for satellite's main body to estimate disturbance torque acted by motion of payloads. Meanwhile, the adaptive fast nonsingular terminal sliding-mode attitude stabilization controller is proposed for satellite's main body to quicken convergence speed of state variables. Similarly, the adaptive fast nonsingular terminal sliding-mode attitude maneuver controller is designed for each payload to weaken the disturbance effect of motion of satellite's main body. Simulation results verify the effectiveness of the proposed method.展开更多
The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped,...The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped, which is the fundamental displacementsolution of an elastic half space with a movable rigid half-cylin-drical inclusion impacted by out-of-plane harmonic line source loadedat any point of its horizontal surface.展开更多
文摘The new methods to determine the zero-energy deformation modes in the hybrid elements and the zero-energy stress modes in their assumed stress fields are presented by the natural deformation modes of the elements. And the formula of the additional element deformation rigidity due to additional mode into the assumed stress field is derived. Based on, it is concluded in theory that the zero-energy stress mode cannot suppress the zero-energy deformation modes but increase the extra rigidity to the nonzero-energy deformation modes of the element instead. So they should not be employed to assume the stress field. In addition, the parasitic stress modes will produce the spurious parasitic energy and result the element behaving over rigidity. Thus, they should not be used into the assumed stress field even though they can suppress the zero-energy deformation modes of the element. The numerical examples show the performance of the elements including the zero-energy stress modes or the parasitic stress modes.
文摘In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.
基金the National Natural Science Foundation of China(Nos.10672040 and 10372022)the Natural Science Foundation of Fujian Province,China(No.E0410008)
文摘The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynamic equation and the Jacobian relation of a free-floating space rigid manipulator are established and then inverted to the state equation for control design. Based on the terminal sliding mode control (SMC) technique, a mathematical expression of the terminal sliding surface is proposed. The terminal SMC scheme is then developed for coordinated motion between the base's attitude and the end-effector of the free-floating space manipulator with external disturbance. This proposed control scheme not only guarantees the existence of the sliding phase of the closed-loop system, but also ensures that the output tracking error converges to zero in finite time. In addition, because the initial system state is always at the terminal sliding surface, the control scheme can eliminate reaching phase of the SMC and guarantee global robustness and stability of the closed-loop system. A planar free-floating space rigid manipulator is simulated to verify the feasibility of the proposed control scheme.
文摘The rigid flexible coupling system with a mass at non-tip position of the flexible beam is studied in this paper. Using the theory about mechanics problems in a non-inertial coordinate sys- tem, the dynamic equations of the rigid flexible coupling system with dynamic stiffening are estab- lished. It is clearly elucidated for the first time that, dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. The modeling approach in this paper successfully solves problems of popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical mechanism for dynamic stiffening can' t be offered. First, the mass at non-tip po- sition is incorporated into the continuous dynamic equations of the system by use of the Dirac lunch tion and the Heaviside function. Then, based on the conclusions of orthogonalization about the nor- mal constrained modes, the finite dimensional state space equations suitable for controller design are obtained. The numerical simulation results show that: dynamic stiffening is included in the first-or- der model established in this paper, which indicates the dynamic responses of the rigid flexible cou- pling system with large overall motion accurately. The results also show that the mass has a soften- ing effect on the dynamic behavior of the flexible beam, and the effect would be more obvious when the mass has a larger mass, or lies closer to the tip of the beam.
文摘A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system,the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystemmodeling framework. It is clearly elucidated for the first time that,dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beamand the transverse vibration deformation of the beam. The modeling approach in this paper successfully avoids problems which are caused by other popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical explanation for dynamic stiffening can't be provided. First,the continuous dynamic models of the flexible beamand the central rigid body are established via structural dynamics and angular momentumtheory respectively. Then,based on the conclusions of orthogonalization about the normal constrained modes,the finite dimensional dynamic model suitable for controller design is obtained. The numerical simulation validations showthat: dynamic stiffening is successfully incorporated into the dynamic characteristics of the first-order model established in this paper,which can indicate the dynamic responses of the rigid flexible coupling system with large overall motion accurately,and has a clear modeling mechanism,concise expressions and a good convergence.
基金supported by the National Natural Science Foundation of China(No.91016017)the Funding of Jiangsu Innovation Program for Graduate Education (No. CXZZ12_0160)+1 种基金the Natural Science Foundation of Jiangsu Province of China(No.BK20130234)the Changzhou Sci.& Tech.Program (CE20145056)
文摘A robust attitude control methodology is proposed for satellite system with double rotary payloads. The dynamic model is built by the Newton-Euler method and then the dynamic interconneetion between satellite's main body and payloads is described precisely. A nonlinear disturbance observer is designed for satellite's main body to estimate disturbance torque acted by motion of payloads. Meanwhile, the adaptive fast nonsingular terminal sliding-mode attitude stabilization controller is proposed for satellite's main body to quicken convergence speed of state variables. Similarly, the adaptive fast nonsingular terminal sliding-mode attitude maneuver controller is designed for each payload to weaken the disturbance effect of motion of satellite's main body. Simulation results verify the effectiveness of the proposed method.
文摘The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped, which is the fundamental displacementsolution of an elastic half space with a movable rigid half-cylin-drical inclusion impacted by out-of-plane harmonic line source loadedat any point of its horizontal surface.