Pavement infrastructure is vital in providing services and links between various sectors of society. Therefore, thepreservation and maintenance of these roads are critical to attaining a pavement network in good condi...Pavement infrastructure is vital in providing services and links between various sectors of society. Therefore, thepreservation and maintenance of these roads are critical to attaining a pavement network in good conditionthroughout its service life. Various performance indicators like the international roughness index (IRI), pavementcondition index (PCI), and present serviceability rating (PSR) have been used by the state department of transportation (DOT) and highway agencies for evaluating pavement surface conditions and planning future maintenance strategies. Limited data availability, multiple distresses depending on region, lack of correlation of thesecondition indices to maintenance strategies, and data collection limitations pose a challenge for applying theseindices to local conditions. This paper compares condition indices of different states for rigid pavements. Further,using a specific condition index for local conditions is also highlighted. For this purpose, five states and theircorresponding condition indices were evaluated and compared to the Michigan DOT distress index (DI). Thesestates include Virginia, Minnesota, North Dakota, Louisiana, and Oregon. The corresponding distresses of eachcondition index were converted to make them compatible with the MDOT DI. This study used the MDOT'spavement management system (PMS) database to evaluate each condition index for 433 rigid pavement sections.Each distress index was plotted against MDOT DI and compared using a paired t-test. Results show that thecondition indices of Virginia and Minnesota are comparable to DI in terms of the Spearman correlation value. Thet-test results show that except for Virgina, condition indices from other states statistically differ from DI.Therefore, one can't use those directly for local conditions in Michigan. This paper presents the evaluation anddata requirements for each condition index and its impact on selecting a maintenance treatment.展开更多
Based on the hypothesis of elastic two-layered foundation system under in-finite slab with known values of thicknesses of various layers and slab modulus,a programADMODE for evaluating foundation modulus is worked out...Based on the hypothesis of elastic two-layered foundation system under in-finite slab with known values of thicknesses of various layers and slab modulus,a programADMODE for evaluating foundation modulus is worked out by putting the inverse com-putation idea for moduli of various layers of foundation into an optimization problem.The validities of the theory and program have been checked and verified by taboratorytest.Besides,the foundation modulus have also been computed with this program by usingthe data obtained from Tai-Zhou experimental road.Through regression analyses,theempirical formulas for computing the increasing multiples of the moduli of subgrade andbase course are presented.展开更多
This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide i...This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide in-formation about the existing works on the subject,critically discuss them and make suggestions for further research.The reviewed papers are presented on the basis of the various models for pavement-vehicle systems and the various methods for dynamically analyzing these systems.Flexible pavements are modeled by a homogeneous or layered half-plane with isotropic or anisotropic and linear elastic,viscoelastic or poroelastic material behavior.Rigid pavements are modeled by a beam or plate on a homogeneous or layered half-plane with material properties like the ones for flexible pavements.The vehicles are modeled as concentrated or distributed over a finite area loads moving with constant or time dependent speed.The above pavement-vehicle models are dynamically analyzed by analytical,analytical/numerical or purely numerical methods working in the time or frequency domain.Representative examples are presented to illustrate the models and methods of analysis,demonstrate their merits and assess the effects of the various parameters on pavement response.The paper closes with con-clusions and suggestions for further research in the area.The significance of this research effort has to do with the presentation of the existing literature on the subject in a critical and easy to understand way with the aid of representative examples and the identification of new research areas.展开更多
In this study, finite element (FE)-based primary pavement response models are employed for investigating the early-age deformation characteristics of jointed plain concrete pavements (JPCP) under environmental eff...In this study, finite element (FE)-based primary pavement response models are employed for investigating the early-age deformation characteristics of jointed plain concrete pavements (JPCP) under environmental effects. The FE-based ISLAB (two-and-one-half-dimensional) and EverFE (three-dimensional) software were used to conduct the response analysis. Sensitivity analyses of input parameters used in ISLAB and EverFE were conducted based on field and laboratory test data collected from instrumented pavements on highway US-34 near Burlington, Iowa. Based on the combination of input parameters and equivalent temperatures established from preliminary studies, FE analyses were performed and compared with the field measurements. Comparisons between field measured and computed deformations showed that both FE programs could produce reasonably accurate estimates of actual slab deformations due to environmental effects using the equivalent temperature difference concept.展开更多
This paper discusses cracking in airport pavements as studied in Construction Cycle 6 of testing carried out at the National Airport Pavement Testing Facility by the Federal Aviation Administration. Pavements of three...This paper discusses cracking in airport pavements as studied in Construction Cycle 6 of testing carried out at the National Airport Pavement Testing Facility by the Federal Aviation Administration. Pavements of three different flexural strengths as well as two different subgrades, a soft bituminous layer and a more rigid layer known as econocrete, were tested. In addition to this, cracking near two types of isolated transition joints, a reinforced edge joint and a thickened edge joint, was considered. The pavement sections were tested using a moving load simulating that of an aircraft. It has been determined that the degree of cracking was reduced as the flexural strength of the pavement was increased and that fewer cracks formed over the econocrete base than over the bituminous base. In addition, the thickened edge transition joint was more effective in preventing cracking at the edges compared to the reinforced edge joint.展开更多
文摘Pavement infrastructure is vital in providing services and links between various sectors of society. Therefore, thepreservation and maintenance of these roads are critical to attaining a pavement network in good conditionthroughout its service life. Various performance indicators like the international roughness index (IRI), pavementcondition index (PCI), and present serviceability rating (PSR) have been used by the state department of transportation (DOT) and highway agencies for evaluating pavement surface conditions and planning future maintenance strategies. Limited data availability, multiple distresses depending on region, lack of correlation of thesecondition indices to maintenance strategies, and data collection limitations pose a challenge for applying theseindices to local conditions. This paper compares condition indices of different states for rigid pavements. Further,using a specific condition index for local conditions is also highlighted. For this purpose, five states and theircorresponding condition indices were evaluated and compared to the Michigan DOT distress index (DI). Thesestates include Virginia, Minnesota, North Dakota, Louisiana, and Oregon. The corresponding distresses of eachcondition index were converted to make them compatible with the MDOT DI. This study used the MDOT'spavement management system (PMS) database to evaluate each condition index for 433 rigid pavement sections.Each distress index was plotted against MDOT DI and compared using a paired t-test. Results show that thecondition indices of Virginia and Minnesota are comparable to DI in terms of the Spearman correlation value. Thet-test results show that except for Virgina, condition indices from other states statistically differ from DI.Therefore, one can't use those directly for local conditions in Michigan. This paper presents the evaluation anddata requirements for each condition index and its impact on selecting a maintenance treatment.
文摘Based on the hypothesis of elastic two-layered foundation system under in-finite slab with known values of thicknesses of various layers and slab modulus,a programADMODE for evaluating foundation modulus is worked out by putting the inverse com-putation idea for moduli of various layers of foundation into an optimization problem.The validities of the theory and program have been checked and verified by taboratorytest.Besides,the foundation modulus have also been computed with this program by usingthe data obtained from Tai-Zhou experimental road.Through regression analyses,theempirical formulas for computing the increasing multiples of the moduli of subgrade andbase course are presented.
文摘This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide in-formation about the existing works on the subject,critically discuss them and make suggestions for further research.The reviewed papers are presented on the basis of the various models for pavement-vehicle systems and the various methods for dynamically analyzing these systems.Flexible pavements are modeled by a homogeneous or layered half-plane with isotropic or anisotropic and linear elastic,viscoelastic or poroelastic material behavior.Rigid pavements are modeled by a beam or plate on a homogeneous or layered half-plane with material properties like the ones for flexible pavements.The vehicles are modeled as concentrated or distributed over a finite area loads moving with constant or time dependent speed.The above pavement-vehicle models are dynamically analyzed by analytical,analytical/numerical or purely numerical methods working in the time or frequency domain.Representative examples are presented to illustrate the models and methods of analysis,demonstrate their merits and assess the effects of the various parameters on pavement response.The paper closes with con-clusions and suggestions for further research in the area.The significance of this research effort has to do with the presentation of the existing literature on the subject in a critical and easy to understand way with the aid of representative examples and the identification of new research areas.
文摘In this study, finite element (FE)-based primary pavement response models are employed for investigating the early-age deformation characteristics of jointed plain concrete pavements (JPCP) under environmental effects. The FE-based ISLAB (two-and-one-half-dimensional) and EverFE (three-dimensional) software were used to conduct the response analysis. Sensitivity analyses of input parameters used in ISLAB and EverFE were conducted based on field and laboratory test data collected from instrumented pavements on highway US-34 near Burlington, Iowa. Based on the combination of input parameters and equivalent temperatures established from preliminary studies, FE analyses were performed and compared with the field measurements. Comparisons between field measured and computed deformations showed that both FE programs could produce reasonably accurate estimates of actual slab deformations due to environmental effects using the equivalent temperature difference concept.
基金the Federal Aviation Administration (FAA) as this work is funded under FAA research grant #10-G-012project has been sponsored by the FAA
文摘This paper discusses cracking in airport pavements as studied in Construction Cycle 6 of testing carried out at the National Airport Pavement Testing Facility by the Federal Aviation Administration. Pavements of three different flexural strengths as well as two different subgrades, a soft bituminous layer and a more rigid layer known as econocrete, were tested. In addition to this, cracking near two types of isolated transition joints, a reinforced edge joint and a thickened edge joint, was considered. The pavement sections were tested using a moving load simulating that of an aircraft. It has been determined that the degree of cracking was reduced as the flexural strength of the pavement was increased and that fewer cracks formed over the econocrete base than over the bituminous base. In addition, the thickened edge transition joint was more effective in preventing cracking at the edges compared to the reinforced edge joint.