期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Oblique perforation of thick metallic plates by rigid projectiles 被引量:8
1
作者 Xiaowei Chen Qingming Li Saucheong Fan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第4期367-376,共10页
Oblique perforation of thick metallic plates by rigid projectiles with various nose shapes is studied in this paper. Two perforation mechanisms, i.e., the hole enlargement for a sharp projectile nose and the plugging ... Oblique perforation of thick metallic plates by rigid projectiles with various nose shapes is studied in this paper. Two perforation mechanisms, i.e., the hole enlargement for a sharp projectile nose and the plugging formation for a blunt projectile nose, are considered in the proposed analytical model. It is shown that the perforation of a thick plate is dominated by several non-dimensional numbers, i.e., the impact function, the geometry function of projectile, the non-dimensional thickness of target and the impact obliquity. Explicit formulae are obtained to predict the ballistic limit, residual velocity and directional change for the oblique perforation of thick metallic plates. The proposed model is able to predict the critical condition for the occurrence of ricochet. The proposed model is validated by comparing the predictions with other existing models and independent experimental data. 展开更多
关键词 Oblique perforation Ballistic limit Metallic plate. rigid projectile Shear plugging
下载PDF
Attitude deflection of oblique perforation of concrete targets by a rigid projectile 被引量:3
2
作者 Zhuo-ping Duan Shu-rui Li +2 位作者 Zhao-fang Ma Zhuo-cheng Ou Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期596-608,共13页
A perforation model is developed to predict the attitude deflection in the oblique perforation of concrete targets by a rigid projectile,in which the inertial moment of the projectile is introduced,together with takin... A perforation model is developed to predict the attitude deflection in the oblique perforation of concrete targets by a rigid projectile,in which the inertial moment of the projectile is introduced,together with taking the attitude deflection during the shear plugging sub-stage into account,and the shape of the plug formed on the rear surface of target is also re-investigated.Moreover,a new classification of concrete targets is proposed based on the target thickness,with which the attitude deflections in different kinds of concrete targets are analyzed.It is found that the numerical results by using the new perforation model are in good agreement with the previous experimental data and simulated results.Furthermore,the variations of the attitude deflection with the initial conditions(the initial attitude angle and the initial impact velocity) are investigated. 展开更多
关键词 Oblique perforation Penetration Concrete target Attitude deflection rigid projectile
下载PDF
Numerical study on the resistance of rigid projectiles penetrating into semi-infinite concrete targets
3
作者 Huawei Yang Jie Zhang +2 位作者 Zhiyong Wang Zhihua Wang Q.M.Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第3期482-493,I0003,共13页
A study on the resistance of rigid projectiles penetrating into semi-infinite concrete targets is performed in this paper.Experimental data are analyzed to examine the penetration resistance during various stages of t... A study on the resistance of rigid projectiles penetrating into semi-infinite concrete targets is performed in this paper.Experimental data are analyzed to examine the penetration resistance during various stages of the penetration process.A numerical tool using AUTODYN hydrocode is applied in the study.The numerical results on both deceleration-time history and depth of penetration of projectiles are in good agreement with experimental data,which demonstrate the feasibility of the numerical model in these conditions.Based on the numerical model with a two-staged pre-drilled hole,the rigid projectile penetration in tunneling stage is studied for concrete targets with different strengths in a wide range of impact velocities.The results show that the penetration in tunnel stage can be divided into two different cases in terms of initial impact velocity.In the first case,when the impact velocity is approximately less than 600 m/s,the deceleration depends on initial impact velocity.In the second case,when the impact velocity is greater than 600 m/s,the effect of target inertia becomes apparent,which agrees with commonly used concrete penetration resistance equations based on cavity expansion model. 展开更多
关键词 rigid projectile Penetration resistance Entrance phase Inertial term Concrete target
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部