In this paper motion of rigid rod on a circular surface is studied analytically.A new analytical method called modified homotopy perturbation method(MHPM)is applied for solving this problem in different initial condit...In this paper motion of rigid rod on a circular surface is studied analytically.A new analytical method called modified homotopy perturbation method(MHPM)is applied for solving this problem in different initial conditions to show capability of this method.The goveming equation for motion of a nigid rod on the circular surface without slipping have been solved using MHPM.The efficacy of MHPM for handling nonlinear oscillation systems with various small and large oscillation amplitudes are presented in comparison with numerical benchmarks.Outcomes reveal that MHPM has an excellent agreement with numerical solution.The results show that by decreasing the oscillation amplitude,the velocity of rigid rod decreases and for A=w3 the velocity profile is maximum.展开更多
A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S...A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S, depending upon initial impact velocity, there exist three types of penetration, namely, penetration by a rigid long rod, penetration by a deforming non-erosive long rod and penetration by an erosive long rod. If the impact velocity of the penetrator is higher than the hydrodynamic velocity (VH), it will penetrate the target in an erosive mode; if the impact velocity lies between the hydrodynamic velocity (VH) and the rigid body velocity (VR), it will penetrate the target in a deformable mode; if the impact velocity is less than the rigid body velocity (VR), it will penetrate the target in a rigid mode. The critical conditions for the transition among these three penetration modes are proposed. It is demonstrated that the present model predictions correlate well with the experimental observations in terms of depth of penetration (DOP) and the critical transition conditions.展开更多
Semi-rigid liquid crystal polymer is a class of liquid crystal polymers different from long rigid rod liquid crystal polymer to which the well-known Onsager and Flory theories are applied. In this paper, three statist...Semi-rigid liquid crystal polymer is a class of liquid crystal polymers different from long rigid rod liquid crystal polymer to which the well-known Onsager and Flory theories are applied. In this paper, three statistical models for the semi-rigid nematic polymer were addressed. They are the elastically jointed rod model, worm-like chain model, and non-homogeneous chain model. The nematic-isotropic transition temperature was examined. The pseudo-second transition temperature is expressed analytically. Comparisons with the experiments were made and the agreements were found.展开更多
文摘In this paper motion of rigid rod on a circular surface is studied analytically.A new analytical method called modified homotopy perturbation method(MHPM)is applied for solving this problem in different initial conditions to show capability of this method.The goveming equation for motion of a nigid rod on the circular surface without slipping have been solved using MHPM.The efficacy of MHPM for handling nonlinear oscillation systems with various small and large oscillation amplitudes are presented in comparison with numerical benchmarks.Outcomes reveal that MHPM has an excellent agreement with numerical solution.The results show that by decreasing the oscillation amplitude,the velocity of rigid rod decreases and for A=w3 the velocity profile is maximum.
基金supported by the National Natural Science Foundation of China (10872195)
文摘A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S, depending upon initial impact velocity, there exist three types of penetration, namely, penetration by a rigid long rod, penetration by a deforming non-erosive long rod and penetration by an erosive long rod. If the impact velocity of the penetrator is higher than the hydrodynamic velocity (VH), it will penetrate the target in an erosive mode; if the impact velocity lies between the hydrodynamic velocity (VH) and the rigid body velocity (VR), it will penetrate the target in a deformable mode; if the impact velocity is less than the rigid body velocity (VR), it will penetrate the target in a rigid mode. The critical conditions for the transition among these three penetration modes are proposed. It is demonstrated that the present model predictions correlate well with the experimental observations in terms of depth of penetration (DOP) and the critical transition conditions.
基金The work was supported by the Foundation of State Education Committee of China
文摘Semi-rigid liquid crystal polymer is a class of liquid crystal polymers different from long rigid rod liquid crystal polymer to which the well-known Onsager and Flory theories are applied. In this paper, three statistical models for the semi-rigid nematic polymer were addressed. They are the elastically jointed rod model, worm-like chain model, and non-homogeneous chain model. The nematic-isotropic transition temperature was examined. The pseudo-second transition temperature is expressed analytically. Comparisons with the experiments were made and the agreements were found.