期刊文献+
共找到2,523篇文章
< 1 2 127 >
每页显示 20 50 100
Influence of joint spacing and rock characteristics on the toppling stability of cut rock slope through a simplified limit equilibrium method
1
作者 ZHANG Xue-peng JIANG Yu-jing +6 位作者 DU Yan WANG Ke-peng CAI Yue WANG Xing-da SU Hang GOLSANAMI Naser LIU Bao-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2694-2702,共9页
Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a... Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together. 展开更多
关键词 slope stability flexural toppling rock slope simplified limit equilibrium method
下载PDF
Probabilistic Analysis of Slope Using Finite Element Approach and Limit Equilibrium Approach around Amalpata Landslide of West Central, Nepal
2
作者 Mahendra Acharya Khomendra Bhandari +2 位作者 Sandesh Dhakal Aasish Giri Prabin Kafle 《International Journal of Geosciences》 CAS 2024年第5期416-432,共17页
The stability study of the ongoing and recurring Amalpata landslide in Baglung in Nepal’s Gandaki Province is presented in this research. The impacted slope is around 200 meters high, with two terraces that have diff... The stability study of the ongoing and recurring Amalpata landslide in Baglung in Nepal’s Gandaki Province is presented in this research. The impacted slope is around 200 meters high, with two terraces that have different slope inclinations. The lower bench, located above the basement, consistently fails and sets others up for failure. The fluctuating water level of the slope, which travels down the slope masses, exacerbates the slide problem. The majority of these rocks are Amalpata landslide area experiences several structural disruptions. The area’s stability must be evaluated in order to prevent and control more harm from occurring to the nearby agricultural land and people living along the slope. The slopes’ failures increase the damages of house existing in nearby area and the erosion of the slope. Two modeling techniques the finite element approach and the limit equilibrium method were used to simulate the slope. The findings show that, in every case, the terrace above the basement is where the majority of the stress is concentrated, with a safety factor of near unity. Using probabilistic slope stability analysis, the failure probability was predicted to be between 98.90% and 100%. 展开更多
关键词 Finite Element Approach limit equilibrium Method SLOPE Factor of Safety
下载PDF
Fully Distributed Nash Equilibrium Seeking for High-Order Players With Actuator Limitations 被引量:4
3
作者 Maojiao Ye Qing-Long Han +1 位作者 Lei Ding Shengyuan Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第6期1434-1444,共11页
This paper explores the problem of distributed Nash equilibrium seeking in games, where players have limited knowledge on other players' actions. In particular, the involved players are considered to be high-order... This paper explores the problem of distributed Nash equilibrium seeking in games, where players have limited knowledge on other players' actions. In particular, the involved players are considered to be high-order integrators with their control inputs constrained within a pre-specified region. A linear transformation for players' dynamics is firstly utilized to facilitate the design of bounded control inputs incorporating multiple saturation functions. By introducing consensus protocols with adaptive and time-varying gains, the unknown actions for players are distributively estimated. Then, a fully distributed Nash equilibrium seeking strategy is exploited, showcasing its remarkable properties: (1) ensuring the boundedness of control inputs;(2) avoiding any global information/parameters;and (3) allowing the graph to be directed. Based on Lyapunov stability analysis, it is theoretically proved that the proposed distributed control strategy can lead all the players' actions to the Nash equilibrium. Finally, an illustrative example is given to validate effectiveness of the proposed method. 展开更多
关键词 Actuator limitation directed networks GAMES Nash equilibrium
下载PDF
Limit equilibrium analysis for stability of soil nailed slope and optimum design of soil nailing parameters 被引量:5
4
作者 DENG Dong-ping LI Liang ZHAO Lian-heng 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第11期2496-2503,共8页
Reinforcement of slopes using soil nailing can effectively improve slope stability, and it has been widely used in upgrading cut slopes. Based on the assumptions of stresses on the slip surface, a new method for analy... Reinforcement of slopes using soil nailing can effectively improve slope stability, and it has been widely used in upgrading cut slopes. Based on the assumptions of stresses on the slip surface, a new method for analyzing the stability of a slope reinforced with soil nails was established in the limit equilibrium theory framework, by considering that slope sliding occurs owing to shear failure of the slip surface, which subjects to Mohr–Coulomb(M–C) strength criterion. Meanwhile, in order to easily analyze the stability of a soil nailed slope in actual engineering and facilitate optimum design of parameters for soil nailing, factor of safety(FOS) contour curve charts were drawn on the basis of the established linear proportional relationship between the spacing of soil nails and slope height, and the length of soil nails and slope height. Then, by analyzing and verifying the results obtained from classic examples, some conclusions can be got as follows: 1) The results obtained from the current method are close to those obtained from the traditional limit equilibrium methods, and the current method can provide a strict solution for the slope FOS as it satisfies all the static equilibrium conditions of a sliding body, thus confirming the feasibility of the current method; 2) The slope FOS contour curve charts can be used not only to reliably analyze the stability of a soil nailed slope, but also to design optimally the parameters of soil nailing for the slope with a certain safety requirement. 展开更多
关键词 SLOPE STABILITY soil NAILING limit equilibrium factor of safety CONTOUR curve optimum design
下载PDF
Overhanging rock slope by design:An integrated approach using rock mass strength characterisation,large-scale numerical modelling and limit equilibrium methods 被引量:10
5
作者 Paul Schlotfeldt Davide Elmo Brad Panton 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期72-90,共19页
Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlight... Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope. 展开更多
关键词 Rock slopes Discrete fracture network(DFN) Rock mass strength characterisation Numerical modelling limit equilibrium(LE) methods
下载PDF
Lateral Bearing Capacity of Modified Suction Caissons Determined by Using the Limit Equilibrium Method 被引量:6
6
作者 LI Da-yong MA Shi-li +1 位作者 ZHANG Yu-kun CHEN Fu-quan 《China Ocean Engineering》 SCIE EI CSCD 2018年第4期461-466,共6页
The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wi... The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wind turbine foundation subjected to larger lateral loads compared with the imposed vertical loads. Determination of the lateral bearing capacity is a key issue for the MSC design. The formula estimating the lateral bearing capacity of the MSC was proposed in terms of the limit equilibrium method and was verified by the test results. Parametric studies on the lateral bearing capacity were also carried out. It was found that the lateral bearing capacity of the MSC increases with the increasing length and radius of the external skirt, and the lateral bearing capacity increases linearly with the increasing coefficient of subgrade reaction. The maximum lateral bearing capacity of the MSC is attained when the ratio of the radii of the internal compartment to the external skirt equals 0.82 and the ratio of the lengths of the external skirt to the internal compartment equals 0.48, provided that the steel usage of the MSC is kept constant. 展开更多
关键词 modified suction caissons(MSCs) lateral bearing capacity limit equilibrium method parametric studies
下载PDF
A Generalized Limit Equilibrium Method for the Solution of Active Earth Pressure on a Retaining Wall 被引量:11
7
作者 OUYANG Chao-jun XU Qiang +2 位作者 HE Si-ming LUO Yu WU Yong 《Journal of Mountain Science》 SCIE CSCD 2013年第6期1018-1027,共10页
In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape wi... In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape without any assumptions of pre-defined shapes is needed in the current framework, which is verified to find the most probable failure slip surface. Based on the current computational framework, numerical comparisons with experiment, discrete element method and other methods are carried out. In addition, the influences of the inclination of the wall, the soil cohesion, the angle of the internal friction of the soil, the slope inclination of the backfill soil on the critical pressure coefficient of the soil, the point of application of the resultant earth pressure and the shape of the slip surface are also carefully investigated. The results demonstrate that limit equilibrium solution from predefined slip plane assumption, including Coulomb solution, is a special case of current computational framework. It is well illustrated that the current method is feasible to evaluate the characteristics of earth pressure problem. 展开更多
关键词 limit equilibrium method Retainingwall Active earth pressure Critical slip surface
下载PDF
A limit equilibrium fracture zone model to investigate seismicity in coal mines 被引量:2
8
作者 Daniel Malan John Napier 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第5期745-753,共9页
This paper explores possible synergies between techniques used to minimise seismicity in deep South African gold mines and their applicability to control coal bumps. The paper gives a summary of the techniques used in... This paper explores possible synergies between techniques used to minimise seismicity in deep South African gold mines and their applicability to control coal bumps. The paper gives a summary of the techniques used in the deep gold mines and a critical appraisal if these are useful in coal mines. The techniques typically include control of mining rate, preconditioning, optimisation of extraction sequences and centralised blasting. Of particular interest to the coal bump problem is an experimental limit equilibrium fracture zone model implemented in a displacement discontinuity code. This was recently developed for the gold mines to enable the interactive analysis of complex tabular mine layout extraction sequences. The model specifically accommodates energy dissipation computations in the developing fracture zone near the edges of these excavations. This allows the released energy to be used as a surrogate measure of ongoing seismic activity and addresses a number of the weaknesses in the traditional usage of this quantity as a criterion for the design of seismically active layouts. This paper investigates the application of the model to a hypothetical coal longwall layout and the specific problem of coal bumps. 展开更多
关键词 COAL bumps limit equilibrium model Mining rate SEISMICITY
下载PDF
GIS-based 3D limit equilibrium analysis for design optimization of a 600 m high slope in an open pit mine 被引量:4
9
作者 Meifeng Cai Mowen Xie Chunlei Li 《Journal of University of Science and Technology Beijing》 CSCD 2007年第1期1-5,共5页
Combining the GIS (geographic information systems) grid-based data with four proposed column-based 3D slope stability analysis models, a comprehensive solution of a high-steep open-pit slope has been obtained. For s... Combining the GIS (geographic information systems) grid-based data with four proposed column-based 3D slope stability analysis models, a comprehensive solution of a high-steep open-pit slope has been obtained. For six searching ranges, 19 critical slip surfaces of different sizes have been studied, in which the minimum 3D safety factor is 1.33. Comparison of 3D safety factors of designed and proposed slope plans shows for all the critical slip surfaces for the proposed plan, the smallest 3D safety factor is 1.33 under the most unfavorable condition. This means that the proposed plan of the high slopes, about 600 m, of an open pit (2-5° steeper than designed plan) is feasible. 展开更多
关键词 three-dimensional slope stability limit equilibrium equation geographic information systems (GIS) high slope deep open-pit
下载PDF
Comprehensive analysis of slope stability and determination of stable slopes in the Chador-Malu iron ore mine using numerical and limit equilibrium methods 被引量:18
10
作者 ATAEI M BODAGHABADI S 《Journal of China University of Mining and Technology》 2008年第4期488-493,共6页
One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was consid... One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then, the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hoek-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (tp) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height. Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height. 展开更多
关键词 slope stability limit equilibrium method numerical method rock mass classification
下载PDF
Mechanism of energy limit equilibrium of rock burst in coal mine 被引量:4
11
作者 Wang Jiong Yan Yubiao +2 位作者 Jiang Zhengjun Qi Ping Chen Chen 《Mining Science and Technology》 EI CAS 2011年第2期197-200,共4页
With the increase of mining depth,the effect of rock burst on coal mining is becoming more and more obvious and the rock burst mechanism becomes more and more complicated.Scholars from many countries had put forward d... With the increase of mining depth,the effect of rock burst on coal mining is becoming more and more obvious and the rock burst mechanism becomes more and more complicated.Scholars from many countries had put forward different mechanisms,but no one gave a reasonable explanation to the mechanism of rock burst.In this paper,based on the energy theories,we studied the energy limit equilibrium(ELE) of coal mine rock burst The coal seam with rock burst is divided into energy limit equilibrium zone(ELEZ)(A) and elastic zone(B);we also determined the position where the rock burst occurs,including the roof and floor of coal seams;in addition,we derived the limit width of ELEZ and the mathematic relationship between the limit width and occurrence mechanism of rock burst:the energy difference function(EDF),w(x) = w_j - w_p,because first-order derivative w'(x),is less than 0.So EDF is a monotonically decreasing function.The graph of the energy difference function was also determined, through which we analysed the occurrence mechanism of rock burst. 展开更多
关键词 Rock burst Elastic zone limit stress Energy limit equilibrium(ELE) limit energy
下载PDF
A Method Combining Numerical Analysis and Limit Equilibrium Theory to Determine Potential Slip Surfaces in Soil Slopes 被引量:6
12
作者 XIAO Shiguo YAN Liping CHENG Zhiqiang 《Journal of Mountain Science》 SCIE CSCD 2011年第5期718-727,共10页
This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any po... This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any point in a slope is determined using the Coulomb’s strength principle and the extremum principle based on the ratio of the shear strength to the shear stress at that point. The ratio, which is considered as an analysis index, can be computed once the stress field of the soil slope is obtained. The critical slip direction at any point in the slope must be the tangential direction of a potential slip surface passing through the point. Therefore, starting from a point on the top of the slope surface or on the horizontal segment outside the slope toe, the increment with a small distance into the slope is used to choose another point and the corresponding slip direction at the point is computed. Connecting all the points used in the computation forms a potential slip surface exiting at the starting point. Then the factor of safety for any potential slip surface can be computed using limit equilibrium method like Spencer method. After factors of safety for all the potential slip surfaces are obtained, the minimum one is the factor of safety for the slope and the corresponding potential slip surface is the critical slip surface of the slope. The proposed method does not need to pre-assume the shape of potential slip surfaces. Thus it is suitable for any shape of slip surfaces. Moreover the method is very simple to be applied. Examples are presented in this paper to illustrate the feasibility of the proposed method programmed in ANSYS software by macro commands. 展开更多
关键词 Soil slope Stress field Potential slip surface Slope stability Factor of safety Numerical analysis limit equilibrium method ANSYS software
下载PDF
Limit equilibrium analysis for rock slope stability using basic Hoek–Brown strength criterion 被引量:5
13
作者 邓东平 赵炼恒 李亮 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2154-2163,共10页
Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only sui... Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only suitable for analyzing the rock slope stability using the linear equivalent Mohr–Coulomb(EMC)strength parameters instead of the nonlinear HB strength criterion.Therefore,a new method derived to analyze directly the rock slope stability using the nonlinear HB strength criterion for arbitrary curve slip surface was described in the limit equilibrium framework.The current method was established based on certain assumptions concerning the stresses on the slip surface through amending the initial normal stressσ0 obtained without considering the effect of inter-slice forces,and it can satisfy all static equilibrium conditions of the sliding body,so the current method can obtain the reasonable and strict factor of safety(FOS)solutions.Compared with the results of other methods in some examples,the feasibility of the current method was verified.Meanwhile,the parametric analysis shows that the slope angleβhas an important influence on the difference of the results obtained using the nonlinear HB strength criterion and its linear EMC strength parameters.Forβ≤45°,both of the results are similar,showing the traditional limit equilibrium methods using the linear EMC strength parameters and the current method are all suitable to analyze rock slope stability,but forβ>60°,the differences of both the results are obvious,showing the actual slope stability state can not be reflected in the traditional limit equilibrium methods,and then the current method should be used. 展开更多
关键词 Hoek-Brown strength criterion linear equivalent Mohr-Coulomb strength parameters slope stability limit equilibrium slip surface factor of safety
下载PDF
Determination Method for Shear Strength Parameters of Rock-Soil Mixtures Using Close-Range Photogrammetry and 3-D Limit Equilibrium Theory 被引量:3
14
作者 ZHOU Jia-wen YANG Xing-guo YANG Zhao-hui 《Journal of Mountain Science》 SCIE CSCD 2015年第5期1068-1083,共16页
Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogra... Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogrammetry method is used for measurement of the 3-D terrain of the experimental target. Auto CAD Lisp and EXCEL VBA are used to perform 3-D limit equilibrium analysis of the stability of sliding mass and perform backanalysis of shear strength parameters. The presented method was used to determine the shear strength parameters of rock-soil mixtures at the Liyuan Hydropower Station. The 3-D terrain of sliding surface could be measured notably well using of closerange photogrammetry. The computed results reveal that the cohesion and friction angle of rock-soil mixtures were 3.15 k Pa and 29.88o for test A, respectively, and 4.43 k Pa and 28.30o for test B, respectively, within the range of shear strength parameters, as determined by field and laboratory tests. The computation of shear strength parameters is influenced by the mesh grid number, especially the cohesion of the rock-soil mixture. The application of close-range photogrammetry can reduce the siteworks and improve the computational efficiency and accuracy. 展开更多
关键词 Rock-soil mixtures In-situ horizontalpush-shear test PHOTOGRAMMETRY limit equilibrium Shear strength parameters
下载PDF
Dynamic limit equilibrium analysis of sliding block for rock slope based on nonlinear FEM 被引量:2
15
作者 刘相儒 何柱 +2 位作者 冷旷代 黄跃群 杨强 《Journal of Central South University》 SCIE EI CAS 2013年第8期2263-2274,共12页
Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the st... Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering. 展开更多
关键词 dynamic stability sliding block limit equilibrium analysis multi-grid nonlinear FEM
下载PDF
Investigating a potential reservoir landslide and suggesting its treatment using limit-equilibrium and numerical methods 被引量:2
16
作者 Nima BABANOURI Hesam DEHGHANI 《Journal of Mountain Science》 SCIE CSCD 2017年第3期432-441,共10页
A reservoir landslide not only reduces the water storage capacity, but also causes extensive damages to the dam body, power/water transmission lines, roads, and other infrastructures. The Latian Dam, located 35 km nor... A reservoir landslide not only reduces the water storage capacity, but also causes extensive damages to the dam body, power/water transmission lines, roads, and other infrastructures. The Latian Dam, located 35 km north east of Tehran (Iran), is one of the cases which has encountered serious problems with instability of its rock abutments. This paper addresses the stability analysis of the right abutment of the Latian Dam using limit equilibrium and numerical methods. Geomechanical characteristics of the rock abutment were first estimated based on engineering classification of the rock mass. Different search methods were examined for locating the critical circular/non-circular slip surface in conjunction with the general limit equilibrium method. The effect of variabi]ity of rock mass properties, water table, and earthquake load on the factor of safety (FS) and probability of failure (PF) was studied. In the event of rapid drawdown in the reservoir, the limit equilibrium analysis calculated FS=1.067 and PF=21.1%, and the numerical analysis returned FS=1.01. The results of the analyses suggest that the right abutment of the Latian Dam is prone to slide and needs treatment. Investigations demonstrated that a slope reduction by 15° at the upper part of the abutment would meet stability conditions even in the worst-case scenario (FS=1.297 and PF=2.07%). 展开更多
关键词 Reservoir landslide limit equilibrium Numerical modeling RELIABILITY Slope stabilization
下载PDF
Limit equilibrium stability analysis of slopes under external loads 被引量:4
17
作者 DENG Dong-ping ZHAO Lian-heng LI Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2382-2396,共15页
Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip su... Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip surface along the force action line, were considered. Meanwhile, four basic distribution patterns of external load were used, of which complex external loads could be composed. In analysis process, several limit equilibrium methods, such as Swedish method, simplified Bishop method, simplified Janbu method, Spencer method, Morgenstern-Price(M-P) method, Sarma method, and unbalanced thrust method, were also adopted to contrast their differences in slope stability under the external load. According to parametric analysis, some conclusions can be obtained as follows:(1) The external load, with the large magnitude, small inclination angle, and acting position close to the slope toe,has more positive effect on slope stability;(2) The results calculated using modes I and II of external load are similar, indicating that the calculation mode of external load has little influence on slope stability;(3) If different patterns of external loads are equivalent to each other, their slope stability under these external loads are the same, and if not, the external load leads to the better slope stability,as action position of the resultant force for external load is closer to the lower sliding point of slip surface. 展开更多
关键词 slope stability calculation mode of external load distribution pattern of external load limit equilibrium slip surface factor of safety (FOS)
下载PDF
Limit equilibrium method for slope stability based on assumed stress on slip surface 被引量:2
18
作者 邓东平 赵炼恒 李亮 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2972-2983,共12页
In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-... In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-C) strength criterion and the initial normal stress without considering the inter-slice(or inter-column) forces, the normal and shear stresses on the slip surface are assumed using some dimensionless variables, and these variables have the same numbers with the force and moment equilibrium equations of a sliding body to establish easily the linear equation groups for solving them. After these variables are determined, the normal stresses, shear stresses, and slope safety factor are also obtained using the stresses assumptions and M-C strength criterion. In the case of a three-dimensional slope stability analysis, three calculation methods, namely, a non-strict method, quasi-strict method, and strict method, can be obtained by satisfying different force and moment equilibrium conditions. Results of the comparison in the classic two- and three-dimensional slope examples show that the slope safety factors calculated using the current method and the other limit equilibrium methods are approximately equal to each other, indicating the feasibility of the current method; further, the following conclusions are obtained: 1) The current method better amends the initial normal and shear stresses acting on the slip surface, and has the identical results with using simplified Bishop method, Spencer method, and Morgenstern-Price(M-P) method; however, the stress curve of the current method is smoother than that obtained using the three abovementioned methods. 2) The current method is suitable for analyzing the two- and three-dimensional slope stability. 3) In the three-dimensional asymmetric sliding body, the non-strict method yields safer solutions, and the results of the quasi-strict method are relatively reasonable and close to those of the strict method, indicating that the quasi-strict method can be used to obtain a reliable slope safety factor. 展开更多
关键词 two-dimensional slope three-dimensional slope limit equilibrium analysis normal stress shear stress safety factor
下载PDF
Stability Evaluation of Slopes Using Kinematic and Limit Equilibrium Analyses in Seismically Active Balakot, KPK, Pakistan 被引量:1
19
作者 Mian Sohail Akram Muhammad Fahad Ullah +3 位作者 Faisal Rehman Muhammad Ali Luqman Ahmed Assad Ali Gillani 《Open Journal of Geology》 2019年第11期795-808,共14页
The Northern segment of Pakistan, especially Balakot city is affected up to large extent by the landslides. Tectonically, it lies in the proximity of Hazara Kashmir Syntaxis and other two active regional faults: Main ... The Northern segment of Pakistan, especially Balakot city is affected up to large extent by the landslides. Tectonically, it lies in the proximity of Hazara Kashmir Syntaxis and other two active regional faults: Main Boundary and Hazara Frontal Thrusts that traversing right through the Balakot town. This study focuses on the evaluation of slopes near Balakot town in static and pseudo-static condition. A geological map is produced at 1:24,000 scale to separate various rock and soil units. During reconnaissance study, two slopes were selected which seem prone to sliding. The procured data on condition of natural slope, properties of material entailed, structural setting, and vegetation cover distribution was gathered. Discontinuity Surveys of slopes were carried out to collect discontinuity parameters. Kinematic analyses were performed on DIPS v. 7.0 to assess mode of failures based on joints data. Limit equilibrium analyses were carried out at Slide v. 7.0 to check factor of safety at different conditions. The study concluded that the slopes were affected by the plane, wedge and toppling failures, while although in seismically active zone, circular failure is not likely. 展开更多
关键词 SLOPE Stability KINEMATIC ANALYSIS limit equilibrium ANALYSIS ROC Science
下载PDF
A new calculation method for axial load capacity of separated concrete-filled steel tubes based on limit equilibrium theory
20
作者 刘夏平 孙卓 +2 位作者 唐述 黄海云 刘爱荣 《Journal of Central South University》 SCIE EI CAS 2013年第6期1750-1758,共9页
A new calculation method for axial load capacity of separated concrete-filled steel tubes based on limit equilibrium theory was proposed,which took into account the decrease of confinement effect by steel tube and the... A new calculation method for axial load capacity of separated concrete-filled steel tubes based on limit equilibrium theory was proposed,which took into account the decrease of confinement effect by steel tube and the non-uniform distribution of ultimate stress in cored concrete.The accuracy of the analytical result is validated through running the numerical result by finite element method (FEM) and experimental data as well.The influences of the key parameters on the load capacity of the concrete-filled steel tube (CFST) was studied,including the separation ratio,concrete compressive strength,and steel strength.The results indicate that the load capacity of the tube increases with concrete strength and steel strength under the separation ratio less than 4%,while decreases with a higher separation ratio improved. 展开更多
关键词 concrete-filled steel tube limit equilibrium theory axial load capacity
下载PDF
上一页 1 2 127 下一页 到第
使用帮助 返回顶部