Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics...Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.展开更多
This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various...This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various asphalt-aggregate surfaces was conducted using molecular dynamics(MD)simulations.The interaction energy and the relative concentration distribution were employed as the parameters to analyze the enhancement mechanisms of anti-stripping agents and coupling agents on the asphalt-aggregate interface.Results indicated that the adhesion at the asphalt-aggregate interface could be strengthened by both anti-stripping agents and coupling agents.Anti-stripping agents primarily improve adhesion through the reinforcement of electrostatic attraction,while coupling agents primarily upgrade adhesion by strengthening the van der Waals.Hence,the molecular dynamics modeling and calculation techniques presented in this study can be utilized to elucidate the development mechanism of the asphalt-aggregate interface through the use of anti-stripping agents and coupling agents.展开更多
The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To...The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To investigate the impact of this complex mechanical environment on the dynamic characteristics of roof sandstone in self-formed roadways without coal pillars,standard specimens of deep sandstone from the 2611 upper tunnel working face of the Yongmei Company within the Henan Coal Chemical Industry Group in Henan,China were prepared,and an orthogonal test was designed.Using a self-developed geotechnical dynamic impact mechanics test system,triaxial dynamic impact tests under thermal-hydraulicmechanical coupling conditions were conducted on deep sandstone.The results indicate that under high confining pressure,deep sandstone exhibits pronounced brittle failure at low temperatures,with peak strength gradually decreasing as temperature and osmotic water pressure increase.Conversely,under low confining pressure and low temperature,the brittleness of deep sandstone weakens gradually,while ductility increases.Moreover,sandstone demonstrates higher peak strength at low temperatures under high axial pressure conditions,lower peak strength at high temperatures,and greater strain under low axial pressure and high osmotic water pressure.Increases in impact air pressure and osmotic water pressure have proportionally greater effects on peak stress and peak strain.Approximately 50%of the input strain energy is utilized as effective energy driving the sandstone fracture process.Polar analysis identifies the optimal combination of factors affecting the peak stress and peak strain of sandstone.Under the coupling effect,intergranular and transgranular fractures occur within the sandstone.SEM images illustrate that the damage forms range from minor damage with multiple fissures to extensive fractures and severe fragmentation.This study elucidates the varied dynamic impact mechanical properties of deep sandstones under thermal-hydraulic-mechanical coupling,along with multifactor analysis methods and their optimal factor combinations.展开更多
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat...In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.展开更多
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically...Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.展开更多
The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carr...The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.展开更多
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro...In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.展开更多
Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety o...Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.展开更多
Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling s...Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification.展开更多
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes...Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.展开更多
Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe u...Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe under their influence, potentially leading to safety problems. In this paper, a fluid–structure separation solution method is implemented using Ansys–Midas co-simulation, in order to solve the above issues effectively while using less computational resources. The feasibility of the method is verified by comparing the tower top displacement response with relevant experimental data. From time and frequency domain perspectives, the displacement and acceleration responses of the sea-crossing Rail-cum-Road cable-stayed bridge influenced by wave-only, wind–wave, and wind–wave–undercurrent coupling are comparatively studied. The results indicate that the displacement and acceleration of the front bearing platform top are more significant than those of the rear bearing platform. The dominant frequency under wind–wave–undercurrent coupling is close to the natural vibration frequencies of several bridge modes,such that wind–wave–undercurrent coupling is more likely to cause a resonance effect in the bridge. Compared with the wave-only and wind–wave coupling, wind–wave–undercurrent coupling can excite bridges to produce larger displacement and acceleration responses: at the middle of the main girder span, compared with the wave-only case, the maximum displacement in the transverse bridge direction increases by 23.58% and 46.95% in the wind–wave and wind–wave–undercurrent coupling cases, respectively;at the tower top, the variation in the amplitude of the displacement and acceleration responses of wind–wave and wind–wave–undercurrent coupling are larger than those in the wave-only case, where the acceleration change amplitude of the tower top is from-0.93 to 0.86 m/s^(2) in the waveonly case, from-2.2 to 2.1 m/s^(2) under wind–wave coupling effect, and from-2.6 to 2.65 m/s^(2) under wind–wave–undercurrent coupling effect, indicating that the tower top is mainly affected by wind loads, but wave and undercurrent loads cannot be neglected.展开更多
Chatter has been a primary obstacle to the successful implementation of high speed machining.The frequency response function(FRF) of the tool point is crucial for identification of chatter free cutting conditions.In...Chatter has been a primary obstacle to the successful implementation of high speed machining.The frequency response function(FRF) of the tool point is crucial for identification of chatter free cutting conditions.In order to quickly acquire the FRF of the different components combinations of machine tool,the assembly of machine tool was always decomposed into several parts,where the fluted portion of tool,however,was always treated as a uniform beam,and the associated discrepancy was ignored.This paper presents a new method to predict the dynamic response of the machine-spindle-holder-tool assembly using the receptance coupling substructure analysis technique,where the assembly is divided into three parts:machine-spindle,holder and tool shank,and tool's fluted portion.Impact testing is used to measure the receptance of machine-spindle,the Timoshenko beam model is employed to analyze the dynamics of holder and tool shank,and the finite element method(FEM) is used to calculate the receptance of the tool's fluted portion.The approximation of the fluted portion cross section using an equivalent diameter is also addressed.All the individual receptances are coupled by using substructure method.The predicted assembly receptance is experimentally verified for three different tool overhang lengths.The results also show that the equivalent diameter beam model reaches an acceptable accuracy.The proposed approach is helpful to predict the tool point dynamics rapidly in industry.展开更多
The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activa...The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.展开更多
To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulate...To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS.展开更多
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate...A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.展开更多
Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15...Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15 meV) and yield correct relative intensity. Based on the results, the uncertain profile at ~6 meV is assigned to anharmonic guest modes coupled strongly to small cages. Blue shift is proposed in phonon dispersion sheet in the case of anticrossing and found to be an evident signal for guest-host coupling that explains the anomalous thermal conductivity of clathrate hydrate.展开更多
The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better unde...The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better understanding of frozen soil dynamics,discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change.However,as an important data source of frozen soil processes,remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes.Although great progress has been made in remote sensing and frozen soil physics,yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies.In the present study,a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed.In order to reduce the uncertainty of the simulation,the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation.The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau.The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%.These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study.The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory.The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil.The average accuracy increased by about 5%after integrating remotely sensed information on the surface soil.The simulation accuracy was significantly improved,especially in transition periods between freezing and thawing of the surface soil.展开更多
The metal plastic flow, tribology performance and work roll vibration on the rolling interface were analyzed. Considering the effect of work roll vibration on the tribology behavior of rolling interface, the damping o...The metal plastic flow, tribology performance and work roll vibration on the rolling interface were analyzed. Considering the effect of work roll vibration on the tribology behavior of rolling interface, the damping of rolling interface was researched. It is found that the rolling interface, where the partial hydraulic lubricating film and dry friction area coexist, is of negative damping coefficient. The negative damping results from the dynamic variation of the thickness of lubricating film in the rolling interface, and is caused by the special coupling between dynamics and tribology of the rolling interface.展开更多
In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned man...In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.展开更多
The seasonal occurrence of Acartia pacifica ( Copepoda: Calanoida) and their resting eggs in the sediment of Xiamen Bay were documented between October 2002 and September 2003. The numher of viable eggs in the sedi...The seasonal occurrence of Acartia pacifica ( Copepoda: Calanoida) and their resting eggs in the sediment of Xiamen Bay were documented between October 2002 and September 2003. The numher of viable eggs in the sediment increased from January to May with the increase in the numher of planktonic females. When the population ofA. pacifica disappeared from the water cohinm, the number of eggs in the sediment began to decrease and reached a low value due to lack of input. The peak of nauplii abundance occurred when the hatching potential of eggs from the sediment was high under the natural environment from February to June. The hatching of resting eggs of A. pacifica was essentially temperature-dependent after suspension, while photoperied regimes had no significant effect on the hatching. The mean density of subitaneeus eggs was 1. 122 0 g/cm^3 with a standard deviation (SD) of 0. 000 2 g/cm^3. The mean density of diapause eggs was 1. 151 2 g/cm^3 with a SD of 0.000 1 g/cm^3. The sinking rates of subitaneons eggs ranged from 19.55 to 26.17 m/d, while those of diapause eggs ranged from 30.29 to 31.28 m/d. The comparison of the egg deposition time and egg hatching time suggested that in most cases virtually all subitaneous eggs of A. pacifica would settle to the bottom before their hatching even though the eggs have high potential to hatch. The evidence was provided that the seasonal dynamics of A. pacifica is accompanied by benthic-pelagic coupling.展开更多
基金support of Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0450101)the National Natural Science Foundation of China(Grant Nos.12125408 and 11974322)+1 种基金the Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0105)the support of the National Natural Science Foundation of China(Grant No.12174363)。
文摘Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.
文摘This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various asphalt-aggregate surfaces was conducted using molecular dynamics(MD)simulations.The interaction energy and the relative concentration distribution were employed as the parameters to analyze the enhancement mechanisms of anti-stripping agents and coupling agents on the asphalt-aggregate interface.Results indicated that the adhesion at the asphalt-aggregate interface could be strengthened by both anti-stripping agents and coupling agents.Anti-stripping agents primarily improve adhesion through the reinforcement of electrostatic attraction,while coupling agents primarily upgrade adhesion by strengthening the van der Waals.Hence,the molecular dynamics modeling and calculation techniques presented in this study can be utilized to elucidate the development mechanism of the asphalt-aggregate interface through the use of anti-stripping agents and coupling agents.
基金supported by the Science and Technology Commissioner Project of Zhejiang Province(2023ST04)the supporting funds for scientific research launch of Zhejiang University of Science and Technology(F701104M11).
文摘The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To investigate the impact of this complex mechanical environment on the dynamic characteristics of roof sandstone in self-formed roadways without coal pillars,standard specimens of deep sandstone from the 2611 upper tunnel working face of the Yongmei Company within the Henan Coal Chemical Industry Group in Henan,China were prepared,and an orthogonal test was designed.Using a self-developed geotechnical dynamic impact mechanics test system,triaxial dynamic impact tests under thermal-hydraulicmechanical coupling conditions were conducted on deep sandstone.The results indicate that under high confining pressure,deep sandstone exhibits pronounced brittle failure at low temperatures,with peak strength gradually decreasing as temperature and osmotic water pressure increase.Conversely,under low confining pressure and low temperature,the brittleness of deep sandstone weakens gradually,while ductility increases.Moreover,sandstone demonstrates higher peak strength at low temperatures under high axial pressure conditions,lower peak strength at high temperatures,and greater strain under low axial pressure and high osmotic water pressure.Increases in impact air pressure and osmotic water pressure have proportionally greater effects on peak stress and peak strain.Approximately 50%of the input strain energy is utilized as effective energy driving the sandstone fracture process.Polar analysis identifies the optimal combination of factors affecting the peak stress and peak strain of sandstone.Under the coupling effect,intergranular and transgranular fractures occur within the sandstone.SEM images illustrate that the damage forms range from minor damage with multiple fissures to extensive fractures and severe fragmentation.This study elucidates the varied dynamic impact mechanical properties of deep sandstones under thermal-hydraulic-mechanical coupling,along with multifactor analysis methods and their optimal factor combinations.
基金National Natural Science Foundation of China(11572001,51478004)2021 Undergraduate Course Ideological and Political Demonstration Course-Theoretical Mechanics(108051360022XN569)2022 Great Innovation Project-Frame Bridge Structural Engineering Research(108051360022XN388)。
文摘In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.
文摘Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.
基金National Natural Science Foundation of China(60475039)
文摘The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472137 and U2141246)。
文摘In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.
基金supported by the National Science Foundation of China(61703437,52232014,61690210,61690212)。
文摘Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.
基金funded by the Open Projects Foundation of Engineering Research Center of Disaster Prevention and Mitigation of Southeast Coastal Engineering Structures of Fujian Province University(Grant No.2022009)the National Natural Science Foundation of China(Grant No.51708429)the Construction Science and Technology Plan Projects of Hubei Province(Grant No.2023011).
文摘Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification.
文摘Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.
文摘Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe under their influence, potentially leading to safety problems. In this paper, a fluid–structure separation solution method is implemented using Ansys–Midas co-simulation, in order to solve the above issues effectively while using less computational resources. The feasibility of the method is verified by comparing the tower top displacement response with relevant experimental data. From time and frequency domain perspectives, the displacement and acceleration responses of the sea-crossing Rail-cum-Road cable-stayed bridge influenced by wave-only, wind–wave, and wind–wave–undercurrent coupling are comparatively studied. The results indicate that the displacement and acceleration of the front bearing platform top are more significant than those of the rear bearing platform. The dominant frequency under wind–wave–undercurrent coupling is close to the natural vibration frequencies of several bridge modes,such that wind–wave–undercurrent coupling is more likely to cause a resonance effect in the bridge. Compared with the wave-only and wind–wave coupling, wind–wave–undercurrent coupling can excite bridges to produce larger displacement and acceleration responses: at the middle of the main girder span, compared with the wave-only case, the maximum displacement in the transverse bridge direction increases by 23.58% and 46.95% in the wind–wave and wind–wave–undercurrent coupling cases, respectively;at the tower top, the variation in the amplitude of the displacement and acceleration responses of wind–wave and wind–wave–undercurrent coupling are larger than those in the wave-only case, where the acceleration change amplitude of the tower top is from-0.93 to 0.86 m/s^(2) in the waveonly case, from-2.2 to 2.1 m/s^(2) under wind–wave coupling effect, and from-2.6 to 2.65 m/s^(2) under wind–wave–undercurrent coupling effect, indicating that the tower top is mainly affected by wind loads, but wave and undercurrent loads cannot be neglected.
基金supported by National Basic Research Program of China (973 Program,Grant No. 2009CB724407)National Natural Science Foundation of China (Grant No. 51005175)Chinese Scholarship Council (University of Florida)
文摘Chatter has been a primary obstacle to the successful implementation of high speed machining.The frequency response function(FRF) of the tool point is crucial for identification of chatter free cutting conditions.In order to quickly acquire the FRF of the different components combinations of machine tool,the assembly of machine tool was always decomposed into several parts,where the fluted portion of tool,however,was always treated as a uniform beam,and the associated discrepancy was ignored.This paper presents a new method to predict the dynamic response of the machine-spindle-holder-tool assembly using the receptance coupling substructure analysis technique,where the assembly is divided into three parts:machine-spindle,holder and tool shank,and tool's fluted portion.Impact testing is used to measure the receptance of machine-spindle,the Timoshenko beam model is employed to analyze the dynamics of holder and tool shank,and the finite element method(FEM) is used to calculate the receptance of the tool's fluted portion.The approximation of the fluted portion cross section using an equivalent diameter is also addressed.All the individual receptances are coupled by using substructure method.The predicted assembly receptance is experimentally verified for three different tool overhang lengths.The results also show that the equivalent diameter beam model reaches an acceptable accuracy.The proposed approach is helpful to predict the tool point dynamics rapidly in industry.
基金This work was financially supported by the Key Project for National Science of "9.5" (Reward Ⅱ for National Science and Technol
文摘The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.
基金Project(51275211)supported by the National Natural Science Foundation of ChinaProject(11KJA580001)supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(CXZZ12_0665)supported by the Postgraduate Innovation Natural Science Foundation of Jiangsu Province,China
文摘To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS.
基金Project(10772113) supported by the National Natural Science Foundation of China
文摘A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.
基金Project supported by the National Natural Science Foundation of China (Grant No 10474085)
文摘Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15 meV) and yield correct relative intensity. Based on the results, the uncertain profile at ~6 meV is assigned to anharmonic guest modes coupled strongly to small cages. Blue shift is proposed in phonon dispersion sheet in the case of anticrossing and found to be an evident signal for guest-host coupling that explains the anomalous thermal conductivity of clathrate hydrate.
基金This work was supported by the National Key R&D Program of(Grant No.2016YFA0602302).
文摘The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better understanding of frozen soil dynamics,discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change.However,as an important data source of frozen soil processes,remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes.Although great progress has been made in remote sensing and frozen soil physics,yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies.In the present study,a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed.In order to reduce the uncertainty of the simulation,the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation.The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau.The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%.These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study.The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory.The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil.The average accuracy increased by about 5%after integrating remotely sensed information on the surface soil.The simulation accuracy was significantly improved,especially in transition periods between freezing and thawing of the surface soil.
文摘The metal plastic flow, tribology performance and work roll vibration on the rolling interface were analyzed. Considering the effect of work roll vibration on the tribology behavior of rolling interface, the damping of rolling interface was researched. It is found that the rolling interface, where the partial hydraulic lubricating film and dry friction area coexist, is of negative damping coefficient. The negative damping results from the dynamic variation of the thickness of lubricating film in the rolling interface, and is caused by the special coupling between dynamics and tribology of the rolling interface.
基金sponsored by Bureau Veritas under the administration of Dr.ime Malenica
文摘In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.
基金We appreciate the support from the National Natural Science Foundation of China under contract Nos 40506002 and 40076034the State 0ceanic Administration Foundation for Young Scientists of China under contract No.2006119the Polar Research Institute of China Innovation Foundation of Polar Science for Young Scientists of China under contract No.JDQ200502.
文摘The seasonal occurrence of Acartia pacifica ( Copepoda: Calanoida) and their resting eggs in the sediment of Xiamen Bay were documented between October 2002 and September 2003. The numher of viable eggs in the sediment increased from January to May with the increase in the numher of planktonic females. When the population ofA. pacifica disappeared from the water cohinm, the number of eggs in the sediment began to decrease and reached a low value due to lack of input. The peak of nauplii abundance occurred when the hatching potential of eggs from the sediment was high under the natural environment from February to June. The hatching of resting eggs of A. pacifica was essentially temperature-dependent after suspension, while photoperied regimes had no significant effect on the hatching. The mean density of subitaneeus eggs was 1. 122 0 g/cm^3 with a standard deviation (SD) of 0. 000 2 g/cm^3. The mean density of diapause eggs was 1. 151 2 g/cm^3 with a SD of 0.000 1 g/cm^3. The sinking rates of subitaneons eggs ranged from 19.55 to 26.17 m/d, while those of diapause eggs ranged from 30.29 to 31.28 m/d. The comparison of the egg deposition time and egg hatching time suggested that in most cases virtually all subitaneous eggs of A. pacifica would settle to the bottom before their hatching even though the eggs have high potential to hatch. The evidence was provided that the seasonal dynamics of A. pacifica is accompanied by benthic-pelagic coupling.