Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ...Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design.展开更多
Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limit...Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limited since organic layers generally have low modulus whereas intrinsic brittleness for inorganic ones remains a great concern. Polymer-based SEIs with rigid and flexible chains in adequate mechanical properties are supposed to address this issue. Herein, a homogeneous and mechanically stable diffusion layer is achieved by blending rigid chains of polyphenylene sulfone(PPSU) with flexible chains of poly(vinylidene fluoride)(PVDF) in a hybrid membrane, enabling uniform diffusion and stabilizing the lithium metal anode. The Li||Cu cell with the protected electrode exhibits a long lifetime more than 450 cycles(0.5 m A cm^(-2), 1.0 m A h cm^(-2))(fourfold longer than the control group) with higher average Coulombic efficiency of 98.7%. Enhanced performances are also observed at Li||Li and full cell configurations. The improved performances are attributed to the controlled morphology and stable interphase, according to scanning electron microscopy(SEM) and electrochemical impedance. This research advances the idea of uniform lithium plating and provides a new insight on how to create a homogeneous and mechanically stable diffusion layer using rigid-flexible polymers.展开更多
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ...Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.展开更多
In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while...In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while in the later model, the flexible rear suspension is built based on the finite element method (FEM) and mode superposition method, in which the deformations of the components are considered. The ride simulations with different speeds are carried out on a 3D digitalized road, and the weighted root mean square (RMS) of accelerations on the seat surface,backrest and at the feet are calculated. The comparison between the responses of the rigid and rigid-flexible coupling multibody models shows that the flexibility of the vehicle parts significantly affects the accelerations at each position, and it is necessary to take the flexibility effects into account for the assessment of ride comfort. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301304]展开更多
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate...A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.展开更多
During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynam...During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynamic problem. This paper presents a 2-D rigid-flexible coupling model to calculate the vehicle's dynamic responses in that period.The vehicle was equivalent to a flexure beam with axial deformation. Hybrid coordinate and modal superposition methods were used to describe its large rigid displacement and small deformation. By the second Lagrange equation,the vehicle centroid's displacements,rotational angle and modal coordinates were chosen as generalized coordinates and then the vehicle 's rigid-flexible coupling dynamic equations were obtained. By numerical simulation,the results of vehicle's motion parameters and transverse internal loads were acquired.The calculation results showed that differences of the vehicle's motion parameters between the rigid-flexible coupling model and the rigid body assumption are noticeable and the peak magnitude of the vehicle's transverse internal loads in the rigid-flexible coupling model is higher remarkably than that in the rigid body assumption.展开更多
In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was go...In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.展开更多
The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. ...The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. By using Pro / E software,the virtual prototype model of gear transmission system in the speed reducer is established,and the rigid model and rigid-flexible coupling model are simulated respectively in ADAMS to obtain the data of gear meshing force. It can be concluded that rigid-flexible coupling model can reflect the real motion better than rigid model by comparing the simulation data of two models.展开更多
Previous work examined the effect of the attached stiffness matrix terms on stability of an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the nonlinear formulations ...Previous work examined the effect of the attached stiffness matrix terms on stability of an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the nonlinear formulations to an elastic beam with free large overall motion. Based on initial stress method, the nonlinear coupling equations of elastic beams are obtained with free large overall motion and the attached stiffness matrix is derived by solving sub-static formulation. The angular velocity and the tip deformation of the elastic pendulum are calculated. The analytical results show that the simulation results of the present model are tabled and coincide with the one-order approximate model. It is shown that the simulation results accord with energy conservation principle.展开更多
This paper aims to explore the deformation of the collided bodies in multibody systems and to effectively simulate the motion path of colliding bodies.First,we describe the geometrically nonlinear problems of material...This paper aims to explore the deformation of the collided bodies in multibody systems and to effectively simulate the motion path of colliding bodies.First,we describe the geometrically nonlinear problems of materials by the total Lagrangian formulation.Second,a first-order integration scheme is used to solve the dynamics equations.An algorithm combining the bi-potential method with the node-to-point contact identification is proposed to solve the interface problems of rigid-flexible interaction collision.To observe the collision process more intuitively,the internal software FER/VIEW is introduced to visualize the results.The accuracy is proved by comparing the proposed method with the analytical solution or another numerical solution.Moreover,the proposed method has more numerical robustness,such as occupying less computer storage,saving the computational cost,and broadening the application range of the bi-potential method.展开更多
The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the ide...The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.展开更多
A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffne...A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffness,the theorems of linear momentum and angular momentum are applied to the mass-rod-disk system based on the kinematic description of the system.With respect to two deflections of the mass and one angular velocity of the system,a group of nonlinear differential equations are established where the tangential inertial force,centrifugal force,Coriolis force as well as the moments of additional inertial forces take important effects on the dynamic response.For the sake of description,these three types of inertial forces mentioned before are referred to as additional inertial forces in this paper.The horizontal deflections of the mass and the angular velocity of the disk rotating about a fixed-axis are numerically solved for the prescribed external torque.The oscillating trajectory of the mass is deeply influenced by the additional inertial forces,meanwhile the dynamic fluctuations of the angular velocity and rotary inertia of the system are strongly affected by the mass oscillation.展开更多
The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role...The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft.展开更多
Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theor...Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theory and energy methodology,the analytical expressions of the equivalent elastic modulus of the metamaterials were derived.Differences in deformation modes,mechanical properties,and energy absorption capacities were characterized by using experiments and the finite element analysis method.The effects of ligament angle and thickness on the mechanical characteristics of two novel metamaterials were investigated by using a parametric analysis.The results show that the stiffness,deformation mode,stress-strain curve,and energy absorption effects of three metamaterials are significantly different.This design philosophy can be extended from 2D to 3D and is applicable at multiple dimensions.展开更多
The aerodynamic design of a rigid-flexible coupling profile is the decisive factor for the flow-field quality of a supersonic free jet wind tunnel nozzle, and its mechanic dynamic features are the key for engineering ...The aerodynamic design of a rigid-flexible coupling profile is the decisive factor for the flow-field quality of a supersonic free jet wind tunnel nozzle, and its mechanic dynamic features are the key for engineering implementation of continuous Mach number regulations. To fulfill the requirements of a free jet inlet/engine compatibility test within a wide simulation envelop, both uniform flow-fields of continuous acceleration and deceleration are necessary. In this paper, the aerodynamic design methods of an expansion wall and machinery implementation plan for the halfflexible single jack nozzle were researched. The profile control in nozzle flexible plate design was studied with a rigid-flexible coupling method. Design and calculations were performed with the help of numerical simulation. The technique of axial free stretching of the flexible plate was used to improve the matching performance between the designed elasticity profile and the theoretical one, and the rigid-flexible coupling structure was calibrated by wind tunnel tests. Results indicate that the flexible plate aerodynamic design method used here is effective and feasible. Via rigidflexible coupling design, the flexible plate agrees with the rigid body very well, and continuous Mach number changes can be achieved during the tests. The nozzle’s exit flow-field uniformity meets the requirements of China Military Standard(GJB).展开更多
In this study, we used global analytical modeswfny(GAMs) to develop a rigid-flexible dynamic modeling approach for spacecraft with large flexible appendages(SwLFA). This approach enables the convenient and precise cal...In this study, we used global analytical modeswfny(GAMs) to develop a rigid-flexible dynamic modeling approach for spacecraft with large flexible appendages(SwLFA). This approach enables the convenient and precise calculation of the natural characteristics for designing an attitude control law for the spacecraft while simultaneously suppressing the active vibration of its flexible appendages. We simplify the flexible spacecraft as a rigid-flexible coupling hub-beam system with tip mass and derive the system's governing equations of motion based on Hamilton's principle. By solving the linearized form of those equations with their associated boundary conditions, we obtain the frequencies as well as the corresponding GAMs of flexible spacecraft,which we use to discretize the equations of motion. Using this approach, we performed numerical simulations to investigate the system's global modes and assess the performance of the controller based on the GAM model. The results reveal that the GAM model can be used to directly calculate the exact global modes of SwLFAs and that the controller based on the discrete GAM model can achieve a control-index for a SwLFA in a shorter time with less input energy than other methods.展开更多
This paper studies the dynamics of a multi-module floating airport with flexible connectors using the network theory. A mathematical model for a chain-type topology structure is developed by using the wave theory, and...This paper studies the dynamics of a multi-module floating airport with flexible connectors using the network theory. A mathematical model for a chain-type topology structure is developed by using the wave theory, and the models of a single floating module and the connector and mooring system. The nonlinear dynamics of the floating airport and the connector force are studied. A remarkable phenomenon of amplitude death is observed, as a weak oscillation state of all floating modules, an important state for the system global dynamic stability. The parametric domain for the onset of amplitude death is identified, and the effects of the wave height and the number of the floating modules on the dynamic stability are discussed. An application of the network theory in the marine engineering is illustrated with the introduction of a new concept for global dynamic stability for the floating airport.展开更多
Advances in nanotechnology depend upon expanding the ability to create biologically inspired complex materials with well-defined multidimensional structures.Fabrication of hybrid hierarchical structures by combining c...Advances in nanotechnology depend upon expanding the ability to create biologically inspired complex materials with well-defined multidimensional structures.Fabrication of hybrid hierarchical structures by combining colloidal organic and inorganic building blocks remains a challenge due to the difficulty in preparing a diverse spectrum of rigid-flexible coupling units of precise shape and size.Herewe reportageneral strategy for crafting amyriad of uniform aggregates via manipulating self-assembly of distinct dendimers with precisely controlled polyhed raloligomeric silse squioxane(POSS)-embedded cores integrating stiffness and ductility.The rigidity of POSS units exerts steric effects onself-amplification of hydrophobic do mains while the flexibility from internally ductile linkages provides ideal scenarios in establishing self-adaptive structural optimization,which subsequently drive the assemblies to proceed into hierarchical self-assembly via multiple coordination effects,generating highly complex multi compartment micelles(MCMs)without any preprocessing.Our facile approach enables a robust modular nanofabrication of well-organized dendrimers toward artificial functional systems with defined geometric architectures and intriguing functions for advanced biological applications.展开更多
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl...Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.展开更多
During the robot-assisted pelvic fracture reduction,the needle-tissue interactive deformation characteristic is not clear,which affects the accuracy of robotic surgery.In this paper,a layered rig-id-flexible coupling ...During the robot-assisted pelvic fracture reduction,the needle-tissue interactive deformation characteristic is not clear,which affects the accuracy of robotic surgery.In this paper,a layered rig-id-flexible coupling model is proposed,and the needle-tissue interactive deformation under the load-ing is analyzed by the Rayleigh-Ritz method,in accordance with the principle of minimum potential energy.The pelvic musculoskeletal tissue is reversely reconstructed,and the structure of the bone is segmented into cancellous bone and cortical bone.The Mooney-Rivlin five-parameter hyperelastic model is used to simulate muscle,and the Ogden hyperelastic model is used to simulate adipose tis-sue.Finite element simulation is performed by loading different magnitudes of forces.The accuracy of the rigid-flexible coupling model is 0.432 mm,which indicates the correctness of the needle-tis-sue interactive deformation theory analysis.展开更多
基金This manuscript is supported by the National Key Research and Development Program of China(Grant No.2021YFB2601000)the National Natural Science Foundation of China(Grant Nos.52278437,52008044)+2 种基金the Natural Science Foundation of Hunan Province(Grant No.2022JJ40479)the Science and Technology Innovation Program of Hunan Provincial Department of Transportation(Grant No.202236)the Changsha Outstanding Innovative Youth Training Program Project(Grant No.kq2306009).
文摘Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design.
基金supported by the National Natural Science Foundation of China (Grant No. 22109008)。
文摘Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limited since organic layers generally have low modulus whereas intrinsic brittleness for inorganic ones remains a great concern. Polymer-based SEIs with rigid and flexible chains in adequate mechanical properties are supposed to address this issue. Herein, a homogeneous and mechanically stable diffusion layer is achieved by blending rigid chains of polyphenylene sulfone(PPSU) with flexible chains of poly(vinylidene fluoride)(PVDF) in a hybrid membrane, enabling uniform diffusion and stabilizing the lithium metal anode. The Li||Cu cell with the protected electrode exhibits a long lifetime more than 450 cycles(0.5 m A cm^(-2), 1.0 m A h cm^(-2))(fourfold longer than the control group) with higher average Coulombic efficiency of 98.7%. Enhanced performances are also observed at Li||Li and full cell configurations. The improved performances are attributed to the controlled morphology and stable interphase, according to scanning electron microscopy(SEM) and electrochemical impedance. This research advances the idea of uniform lithium plating and provides a new insight on how to create a homogeneous and mechanically stable diffusion layer using rigid-flexible polymers.
基金This work was supported by the National Natural Science Foundation of China(No.52172409)Sichuan Outstanding Youth Fund(No.2022JDJQ0025).
文摘Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.
基金supported by the National Natural Science Foundation of China(51175379)the National Basic Research Program of China(2011CB711200)
文摘In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while in the later model, the flexible rear suspension is built based on the finite element method (FEM) and mode superposition method, in which the deformations of the components are considered. The ride simulations with different speeds are carried out on a 3D digitalized road, and the weighted root mean square (RMS) of accelerations on the seat surface,backrest and at the feet are calculated. The comparison between the responses of the rigid and rigid-flexible coupling multibody models shows that the flexibility of the vehicle parts significantly affects the accelerations at each position, and it is necessary to take the flexibility effects into account for the assessment of ride comfort. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301304]
基金Project(10772113) supported by the National Natural Science Foundation of China
文摘A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.
文摘During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynamic problem. This paper presents a 2-D rigid-flexible coupling model to calculate the vehicle's dynamic responses in that period.The vehicle was equivalent to a flexure beam with axial deformation. Hybrid coordinate and modal superposition methods were used to describe its large rigid displacement and small deformation. By the second Lagrange equation,the vehicle centroid's displacements,rotational angle and modal coordinates were chosen as generalized coordinates and then the vehicle 's rigid-flexible coupling dynamic equations were obtained. By numerical simulation,the results of vehicle's motion parameters and transverse internal loads were acquired.The calculation results showed that differences of the vehicle's motion parameters between the rigid-flexible coupling model and the rigid body assumption are noticeable and the peak magnitude of the vehicle's transverse internal loads in the rigid-flexible coupling model is higher remarkably than that in the rigid body assumption.
基金Key Laboratory of Fundamental Science for National Defense,China(No. HIT. KLOF. 2009058)
文摘In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.
文摘The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. By using Pro / E software,the virtual prototype model of gear transmission system in the speed reducer is established,and the rigid model and rigid-flexible coupling model are simulated respectively in ADAMS to obtain the data of gear meshing force. It can be concluded that rigid-flexible coupling model can reflect the real motion better than rigid model by comparing the simulation data of two models.
基金supported by the National Natural Science Foundation of China (11132007)
文摘Previous work examined the effect of the attached stiffness matrix terms on stability of an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the nonlinear formulations to an elastic beam with free large overall motion. Based on initial stress method, the nonlinear coupling equations of elastic beams are obtained with free large overall motion and the attached stiffness matrix is derived by solving sub-static formulation. The angular velocity and the tip deformation of the elastic pendulum are calculated. The analytical results show that the simulation results of the present model are tabled and coincide with the one-order approximate model. It is shown that the simulation results accord with energy conservation principle.
基金supported by the National Youth Science Foundation of China(No.12002290)the National Natural Science Foundation of China(No.11772274)。
文摘This paper aims to explore the deformation of the collided bodies in multibody systems and to effectively simulate the motion path of colliding bodies.First,we describe the geometrically nonlinear problems of materials by the total Lagrangian formulation.Second,a first-order integration scheme is used to solve the dynamics equations.An algorithm combining the bi-potential method with the node-to-point contact identification is proposed to solve the interface problems of rigid-flexible interaction collision.To observe the collision process more intuitively,the internal software FER/VIEW is introduced to visualize the results.The accuracy is proved by comparing the proposed method with the analytical solution or another numerical solution.Moreover,the proposed method has more numerical robustness,such as occupying less computer storage,saving the computational cost,and broadening the application range of the bi-potential method.
文摘The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.
基金This work is supported by the National Natural Science Foundations of China(No.11772071),NSAF(No.U1830115)the Fundamental Research Funds for the Central Universities(No.2020CDJQY-Z004).
文摘A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffness,the theorems of linear momentum and angular momentum are applied to the mass-rod-disk system based on the kinematic description of the system.With respect to two deflections of the mass and one angular velocity of the system,a group of nonlinear differential equations are established where the tangential inertial force,centrifugal force,Coriolis force as well as the moments of additional inertial forces take important effects on the dynamic response.For the sake of description,these three types of inertial forces mentioned before are referred to as additional inertial forces in this paper.The horizontal deflections of the mass and the angular velocity of the disk rotating about a fixed-axis are numerically solved for the prescribed external torque.The oscillating trajectory of the mass is deeply influenced by the additional inertial forces,meanwhile the dynamic fluctuations of the angular velocity and rotary inertia of the system are strongly affected by the mass oscillation.
基金This study was co-supported by the National Natural Science Foundation of China(No.T2288101)the National Key Research and Development Project,China(No.2020YFC1512500).
文摘The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft.
基金supported by the Natural Science Foundation of Hebei Province of China(Grant No.A2020502005)the Independent Research and Development Project of China Aerospace Science and Technology Corporation(Grant No.0337000000003)the National Natural Science Foundation of China(Grant No.12272045).
文摘Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theory and energy methodology,the analytical expressions of the equivalent elastic modulus of the metamaterials were derived.Differences in deformation modes,mechanical properties,and energy absorption capacities were characterized by using experiments and the finite element analysis method.The effects of ligament angle and thickness on the mechanical characteristics of two novel metamaterials were investigated by using a parametric analysis.The results show that the stiffness,deformation mode,stress-strain curve,and energy absorption effects of three metamaterials are significantly different.This design philosophy can be extended from 2D to 3D and is applicable at multiple dimensions.
基金supported by the National Natural Science Foundation of China (Nos. 90916023 and 51176075)
文摘The aerodynamic design of a rigid-flexible coupling profile is the decisive factor for the flow-field quality of a supersonic free jet wind tunnel nozzle, and its mechanic dynamic features are the key for engineering implementation of continuous Mach number regulations. To fulfill the requirements of a free jet inlet/engine compatibility test within a wide simulation envelop, both uniform flow-fields of continuous acceleration and deceleration are necessary. In this paper, the aerodynamic design methods of an expansion wall and machinery implementation plan for the halfflexible single jack nozzle were researched. The profile control in nozzle flexible plate design was studied with a rigid-flexible coupling method. Design and calculations were performed with the help of numerical simulation. The technique of axial free stretching of the flexible plate was used to improve the matching performance between the designed elasticity profile and the theoretical one, and the rigid-flexible coupling structure was calibrated by wind tunnel tests. Results indicate that the flexible plate aerodynamic design method used here is effective and feasible. Via rigidflexible coupling design, the flexible plate agrees with the rigid body very well, and continuous Mach number changes can be achieved during the tests. The nozzle’s exit flow-field uniformity meets the requirements of China Military Standard(GJB).
基金supported by the National Natural Science Foundation of China(Grant No.11472089)China Postdoctoral Science Foundation(Grant No.2017M622260)Shandong Provincial Natural Science Foundation,China(Grant No.ZR2016AP06)
文摘In this study, we used global analytical modeswfny(GAMs) to develop a rigid-flexible dynamic modeling approach for spacecraft with large flexible appendages(SwLFA). This approach enables the convenient and precise calculation of the natural characteristics for designing an attitude control law for the spacecraft while simultaneously suppressing the active vibration of its flexible appendages. We simplify the flexible spacecraft as a rigid-flexible coupling hub-beam system with tip mass and derive the system's governing equations of motion based on Hamilton's principle. By solving the linearized form of those equations with their associated boundary conditions, we obtain the frequencies as well as the corresponding GAMs of flexible spacecraft,which we use to discretize the equations of motion. Using this approach, we performed numerical simulations to investigate the system's global modes and assess the performance of the controller based on the GAM model. The results reveal that the GAM model can be used to directly calculate the exact global modes of SwLFAs and that the controller based on the discrete GAM model can achieve a control-index for a SwLFA in a shorter time with less input energy than other methods.
基金Project supported by the National Basic Research Development Program of China(973 Program,Grant No.2013CB036104)the National Natural Science Foundation of China(Grant Nos.11472100,11702088)the High-Technology Ship Research Projects Sponsored by MIIT
文摘This paper studies the dynamics of a multi-module floating airport with flexible connectors using the network theory. A mathematical model for a chain-type topology structure is developed by using the wave theory, and the models of a single floating module and the connector and mooring system. The nonlinear dynamics of the floating airport and the connector force are studied. A remarkable phenomenon of amplitude death is observed, as a weak oscillation state of all floating modules, an important state for the system global dynamic stability. The parametric domain for the onset of amplitude death is identified, and the effects of the wave height and the number of the floating modules on the dynamic stability are discussed. An application of the network theory in the marine engineering is illustrated with the introduction of a new concept for global dynamic stability for the floating airport.
基金This work was supported by NSFC(nos.51973226,21725403,51803188,and 21504096),the Ministry of Science and Technology of China(no.2014CB932200),and the China Postdoctoral Science Foundation(nos.2018M642783 and 2019T120636).
文摘Advances in nanotechnology depend upon expanding the ability to create biologically inspired complex materials with well-defined multidimensional structures.Fabrication of hybrid hierarchical structures by combining colloidal organic and inorganic building blocks remains a challenge due to the difficulty in preparing a diverse spectrum of rigid-flexible coupling units of precise shape and size.Herewe reportageneral strategy for crafting amyriad of uniform aggregates via manipulating self-assembly of distinct dendimers with precisely controlled polyhed raloligomeric silse squioxane(POSS)-embedded cores integrating stiffness and ductility.The rigidity of POSS units exerts steric effects onself-amplification of hydrophobic do mains while the flexibility from internally ductile linkages provides ideal scenarios in establishing self-adaptive structural optimization,which subsequently drive the assemblies to proceed into hierarchical self-assembly via multiple coordination effects,generating highly complex multi compartment micelles(MCMs)without any preprocessing.Our facile approach enables a robust modular nanofabrication of well-organized dendrimers toward artificial functional systems with defined geometric architectures and intriguing functions for advanced biological applications.
基金supported by the University Outstanding Youth Researcher Support Program of the Education Department of Anhui Province,the National Natural Science Foundation of China(Grant Nos.11902002 and 51705002)the Sichuan Provincial Natural Science Foundation(Grant No.2022NSFSC0275)+1 种基金the Science and Technology Research Project of Chongqing Municipal Education Commission(Grant No.KJQN201901146)the Special Key Project of Technological Innovation and Application Development in Chongqing(Grant No.cstc2020jscx-dxwtBX0048).
文摘Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.
基金the National Key R&D Program of China(No.2020YFB1313803).
文摘During the robot-assisted pelvic fracture reduction,the needle-tissue interactive deformation characteristic is not clear,which affects the accuracy of robotic surgery.In this paper,a layered rig-id-flexible coupling model is proposed,and the needle-tissue interactive deformation under the load-ing is analyzed by the Rayleigh-Ritz method,in accordance with the principle of minimum potential energy.The pelvic musculoskeletal tissue is reversely reconstructed,and the structure of the bone is segmented into cancellous bone and cortical bone.The Mooney-Rivlin five-parameter hyperelastic model is used to simulate muscle,and the Ogden hyperelastic model is used to simulate adipose tis-sue.Finite element simulation is performed by loading different magnitudes of forces.The accuracy of the rigid-flexible coupling model is 0.432 mm,which indicates the correctness of the needle-tis-sue interactive deformation theory analysis.