The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be...The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be generated. In real application, the bubble may move under the combined action of walls in different directions when it forms at the corner of a pipe or at the bottom of a dam. The motion of the bubble shows complex and nonlinear characteristics under these conditions. In order to investigate the bubble pulse features near complex walls, a horizontal wall and a vertical wall are put into the experimental water tank synchronously, and an electric circuit with 200 voltages is designed to generate discharge bubbles, and then experimental study on the bubble pulse features under the combined action of horizontal and vertical walls is carried out. The influences of the combined action of two walls on the bubble shape, pulse period, moving trace and inside jet are obtained by changing the distances from bubble center to the two walls. It aims at providing references for the relevant theoretical and numerical research.展开更多
Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method us...Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.展开更多
The incremental constitutive relation and governing equations with combined stresses for phase transition wave propagation in a thin-walled tube are established based on the phase transition criterion considering both...The incremental constitutive relation and governing equations with combined stresses for phase transition wave propagation in a thin-walled tube are established based on the phase transition criterion considering both the hydrostatic pressure and the deviatoric stress. It is found that the centers of the initial and subsequent phase transition ellipses are shifted along the sigma-axis in the sigma tau-plane due to the tension-compression asymmetry induced by the hydrostatic pressure. The wave solution offers the 'fast' and 'slow' phase transition waves under combined longitudinal and torsional stresses in the phase transition region. The results show some new stress paths and wave structures in a thin-walled tube with phase transition, differing from those of conventional elastic-plastic materials.展开更多
An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the in...An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the influence of the circumferential stressrelated to the radial inertial ef- fect in the tubes. In this paperthe incremental elasto-plastic constitutive relations which areconve- nient for dynamic numerical analysis are adopted, and thefinite-difference method is used to study the evolution adpropagation of elasto-plastic combined stress waves in a thin-walledtube with the radial inertial effect of the tube considered. Thecalculation results are compared with those obtained when the radialinertial effect is not considered. The calculation results show thatthe radial inertial effect of a tube has a fairly great influence onthe propagation of elasto-plastic combined stress waves.展开更多
Dermatofibromas are benign soft tissue tumors that predominantly affect the limbs, and more rarely the chest.Keloidal dermatofibroma is a rare subtype with distinct clinicopathological features and an aggressive clini...Dermatofibromas are benign soft tissue tumors that predominantly affect the limbs, and more rarely the chest.Keloidal dermatofibroma is a rare subtype with distinct clinicopathological features and an aggressive clinical course. By researching the evolution of the disease in this study, we aimed to summarize our experience of managing a rare patient who underwent five surgeries for keloidal dermatofibroma that developed sequentially in the upper arm and chest and propose a novel treatment for keloidal dermatofibroma. We concluded that keloidal dermatofibroma involving larger areas, high tension sites, and multiple localizations can be treated using the principles of pathological scar management.展开更多
This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with...This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load.展开更多
Pile foundation bearing-retaining wall combination structure is a new type of support structure developed in recent years.This article focuses on the characteristics,advantages,and application scope of the support str...Pile foundation bearing-retaining wall combination structure is a new type of support structure developed in recent years.This article focuses on the characteristics,advantages,and application scope of the support structure,while combining a variety of algorithms,according to different geological conditions and slope stability,as well as summarizes the pile foundation bearing-retaining wall combination structure force analysis and design methods,taking a high-fill road project in Chongqing as an example.The application of this support structure under special conditions,such as thicker soil layer,steeper sliding surface,weak foundation,and limited slope release conditions,is presented,which illustrates the technical advantages of this support structure and proving that it has several other advantages,including clear force mechanism as well as economic and reasonable structure,thus providing reference for similar projects.展开更多
New value systems and new aesthetic experience have been formed in the new era,triggered by reform of technical means and transformation of social economy. New multimedia technologies will produce new feelings,new exp...New value systems and new aesthetic experience have been formed in the new era,triggered by reform of technical means and transformation of social economy. New multimedia technologies will produce new feelings,new experience and new ways of thinking,which correspondingly result in changes of landscape designs. Virtual reality technology is used to build autokinetic effect and mobility of feature wall,complex structures and forms,vivid and creative landscape elements,so that the landscapes will interact with users intimately,and humanized landscape spaces will be created.展开更多
The evolution of multi-visceral and isolated intestinal transplant techniques over the last 3 decades has highlighted the technical challenges related to the closure of the abdomen at the end of the procedure.Two key ...The evolution of multi-visceral and isolated intestinal transplant techniques over the last 3 decades has highlighted the technical challenges related to the closure of the abdomen at the end of the procedure.Two key factors that contribute to this challenge include:(1) Volume/edema of donor graft;and(2) loss of abdominal domain in the recipient.Not being able to close the abdominal wall leads to a variety of complications and morbidity that range from complex ventral hernias to bowel perforation.At the end of the 90's this challenge was overcome by graft reduction during the donor operation or bench table procedure(especially reducing liver and small intestine),as well as techniques to increase the volume of abdominal cavity by pre-operative expansion devices.Recent reports from a few groups have demonstrated the ability of transplanting a full-thickness,vascularized abdominal wall from the same donor.Thus,a spectrum of techniques have co-evolved with multivisceral and intestinal transplantation,ranging from graft reduction to enlarging the volume of the abdominal cavity.None of these techniques are free from complications,however in large-volume centers the combinations of both(graft reduction and abdominal widening,sometimes used in the same patient) could decrease the adverse events related to recipient's closure,allowing a faster recovery.The quest for a solution to this unique challenge has led to the proposal and implementation of innovative solutions to enlarge the abdominal cavity.展开更多
基金financially supported by the China National Funds for Distinguished Young Scholars(Grant No.51222904)the National Natural Science Foundation of China(Grant No.51379039)
文摘The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be generated. In real application, the bubble may move under the combined action of walls in different directions when it forms at the corner of a pipe or at the bottom of a dam. The motion of the bubble shows complex and nonlinear characteristics under these conditions. In order to investigate the bubble pulse features near complex walls, a horizontal wall and a vertical wall are put into the experimental water tank synchronously, and an electric circuit with 200 voltages is designed to generate discharge bubbles, and then experimental study on the bubble pulse features under the combined action of horizontal and vertical walls is carried out. The influences of the combined action of two walls on the bubble shape, pulse period, moving trace and inside jet are obtained by changing the distances from bubble center to the two walls. It aims at providing references for the relevant theoretical and numerical research.
基金National Key Research and Development Program of China under Grant Nos. 2018YFC1504400 and 2019YFC1509301Natural Science Foundation of China under Grant No. 52078471Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No. 19EEEVL0402
文摘Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.
基金Project supported by the National Natural Science Foundation of China(No.11072240)
文摘The incremental constitutive relation and governing equations with combined stresses for phase transition wave propagation in a thin-walled tube are established based on the phase transition criterion considering both the hydrostatic pressure and the deviatoric stress. It is found that the centers of the initial and subsequent phase transition ellipses are shifted along the sigma-axis in the sigma tau-plane due to the tension-compression asymmetry induced by the hydrostatic pressure. The wave solution offers the 'fast' and 'slow' phase transition waves under combined longitudinal and torsional stresses in the phase transition region. The results show some new stress paths and wave structures in a thin-walled tube with phase transition, differing from those of conventional elastic-plastic materials.
文摘An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the influence of the circumferential stressrelated to the radial inertial ef- fect in the tubes. In this paperthe incremental elasto-plastic constitutive relations which areconve- nient for dynamic numerical analysis are adopted, and thefinite-difference method is used to study the evolution adpropagation of elasto-plastic combined stress waves in a thin-walledtube with the radial inertial effect of the tube considered. Thecalculation results are compared with those obtained when the radialinertial effect is not considered. The calculation results show thatthe radial inertial effect of a tube has a fairly great influence onthe propagation of elasto-plastic combined stress waves.
文摘Dermatofibromas are benign soft tissue tumors that predominantly affect the limbs, and more rarely the chest.Keloidal dermatofibroma is a rare subtype with distinct clinicopathological features and an aggressive clinical course. By researching the evolution of the disease in this study, we aimed to summarize our experience of managing a rare patient who underwent five surgeries for keloidal dermatofibroma that developed sequentially in the upper arm and chest and propose a novel treatment for keloidal dermatofibroma. We concluded that keloidal dermatofibroma involving larger areas, high tension sites, and multiple localizations can be treated using the principles of pathological scar management.
文摘This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load.
基金Youth Project of Science and Technology Research of Chongqing Municipal Education Commission“Research on the Promotion of Pile Foundation Bearing-Retaining Wall Combined Structure Technology”(Project Number:KJQN201905601)Youth Project of Science and Technology Research of Chongqing Education Commission“Research on Construction Monitoring and Risk Warning of Deep Foundation Pit Project Based on BIM+Internet of Things”(Project Number:KJQN201904306)。
文摘Pile foundation bearing-retaining wall combination structure is a new type of support structure developed in recent years.This article focuses on the characteristics,advantages,and application scope of the support structure,while combining a variety of algorithms,according to different geological conditions and slope stability,as well as summarizes the pile foundation bearing-retaining wall combination structure force analysis and design methods,taking a high-fill road project in Chongqing as an example.The application of this support structure under special conditions,such as thicker soil layer,steeper sliding surface,weak foundation,and limited slope release conditions,is presented,which illustrates the technical advantages of this support structure and proving that it has several other advantages,including clear force mechanism as well as economic and reasonable structure,thus providing reference for similar projects.
文摘New value systems and new aesthetic experience have been formed in the new era,triggered by reform of technical means and transformation of social economy. New multimedia technologies will produce new feelings,new experience and new ways of thinking,which correspondingly result in changes of landscape designs. Virtual reality technology is used to build autokinetic effect and mobility of feature wall,complex structures and forms,vivid and creative landscape elements,so that the landscapes will interact with users intimately,and humanized landscape spaces will be created.
文摘The evolution of multi-visceral and isolated intestinal transplant techniques over the last 3 decades has highlighted the technical challenges related to the closure of the abdomen at the end of the procedure.Two key factors that contribute to this challenge include:(1) Volume/edema of donor graft;and(2) loss of abdominal domain in the recipient.Not being able to close the abdominal wall leads to a variety of complications and morbidity that range from complex ventral hernias to bowel perforation.At the end of the 90's this challenge was overcome by graft reduction during the donor operation or bench table procedure(especially reducing liver and small intestine),as well as techniques to increase the volume of abdominal cavity by pre-operative expansion devices.Recent reports from a few groups have demonstrated the ability of transplanting a full-thickness,vascularized abdominal wall from the same donor.Thus,a spectrum of techniques have co-evolved with multivisceral and intestinal transplantation,ranging from graft reduction to enlarging the volume of the abdominal cavity.None of these techniques are free from complications,however in large-volume centers the combinations of both(graft reduction and abdominal widening,sometimes used in the same patient) could decrease the adverse events related to recipient's closure,allowing a faster recovery.The quest for a solution to this unique challenge has led to the proposal and implementation of innovative solutions to enlarge the abdominal cavity.