期刊文献+
共找到6,420篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation of Underground Reservoir Stability of Pumped Storage Power Station Based on Fluid-Structure Coupling
1
作者 Peng Qiao Shuangshuang Lan +1 位作者 Hongbiao Gu Zhengtan Mao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1381-1399,共19页
Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co... Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state. 展开更多
关键词 Underground reservoir fluid-structure coupling numerical simulation pumped storage power station filling and discharge
下载PDF
Numerical simulation study on the mold strength of magnetic mold casting based on a coupled electromagnetic-structural method
2
作者 Wei-li Peng Jian-hua Zhao +1 位作者 Cheng Gu Ya-jun Wang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期577-587,共11页
The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ... The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds. 展开更多
关键词 magnetic mold casting coupled electromagnetic-structural method numerical simulation stress analysis
下载PDF
CAS-ESM2.0 Successfully Reproduces Historical Atmospheric CO_(2) in a Coupled Carbon−Climate Simulation
3
作者 Jiawen ZHU Juanxiong HE +6 位作者 Duoying JI Yangchun LI He ZHANG Minghua ZHANG Xiaodong ZENG Kece FEI Jiangbo JIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期572-580,共9页
The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to... The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to investigate the interactions among atmospheric CO_(2),the physical climate system,and the carbon cycle of the underlying surface for a better understanding of the Earth system.Earth system models are widely used to investigate these interactions via coupled carbon-climate simulations.The Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0)has successfully fixed a two-way coupling of atmospheric CO_(2)with the climate and carbon cycle on land and in the ocean.Using CAS-ESM2.0,we conducted a coupled carbon-climate simulation by following the CMIP6 proposal of a historical emissions-driven experiment.This paper examines the modeled CO_(2)by comparison with observed CO_(2)at the sites of Mauna Loa and Barrow,and the Greenhouse Gases Observing Satellite(GOSAT)CO_(2)product.The results showed that CAS-ESM2.0 agrees very well with observations in reproducing the increasing trend of annual CO_(2)during the period 1850-2014,and in capturing the seasonal cycle of CO_(2)at the two baseline sites,as well as over northern high latitudes.These agreements illustrate a good ability of CAS-ESM2.0 in simulating carbon-climate interactions,even though uncertainties remain in the processes involved.This paper reports an important stage of the development of CAS-ESM with the coupling of carbon and climate,which will provide significant scientific support for climate research and China’s goal of carbon neutrality. 展开更多
关键词 CAS-ESM atmospheric CO_(2) coupled carbon-climate simulation emissions-driven CMIP6 experiment
下载PDF
Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump
4
作者 He Wang Ying He 《Fluid Dynamics & Materials Processing》 EI 2024年第4期889-899,共11页
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf... Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices. 展开更多
关键词 Magnetic fluid multi-physical field coupling induction pump numerical simulation liquid metal conveying
下载PDF
Multi-scenario Simulation and Spatial-temporal Analysis of LUCC in China's Coastal Zone Based on Coupled SD-FLUS Model
5
作者 HOU Xiyong SONG Baiyuan +2 位作者 ZHANG Xueying WANG Xiaoli LI Dong 《Chinese Geographical Science》 SCIE CSCD 2024年第4期579-598,共20页
Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover chang... Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions. 展开更多
关键词 land use and land cover change(LUCC) multi-scenario simulation system dynamic-future land use simulation(SD-FLUS)model SSP-RCP scenarios model coupling China's coastal zone
下载PDF
Dynamic Simulation for Rigid-Flexible Coupling Model of Gear Transmission System Based on ADAMS 被引量:1
6
作者 陈材 石全 +1 位作者 王广彦 戈洪宇 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期192-195,共4页
The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. ... The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. By using Pro / E software,the virtual prototype model of gear transmission system in the speed reducer is established,and the rigid model and rigid-flexible coupling model are simulated respectively in ADAMS to obtain the data of gear meshing force. It can be concluded that rigid-flexible coupling model can reflect the real motion better than rigid model by comparing the simulation data of two models. 展开更多
关键词 ADAMS gear transmission rigid-flexible coupling simulation
下载PDF
A rigid-flexible coupling finite element model of coupler for analyzing train instability behavior during collision
7
作者 Jingke Zhang Tao Zhu +5 位作者 Bing Yang Xiaorui Wang Shoune Xiao Guangwu Yang Yanwen Liu Quanwei Che 《Railway Engineering Science》 2023年第4期325-339,共15页
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ... Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling. 展开更多
关键词 Intermediate coupler rigid-flexible coupling finite element model Design buckling load Actual buckling load Lateral buckling instability
下载PDF
Multi-dimensional Simulation of Phase Change by a 0D-2D Model Coupling via Stefan Condition
8
作者 Adrien Drouillet Romain Le Tellier +2 位作者 Raphaël Loubère Mathieu Peybernes Louis Viot 《Communications on Applied Mathematics and Computation》 2023年第2期853-884,共32页
Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an applic... Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors.Postulating a core meltdown accident,the behaviour of the core melt(aka corium)into a steel vessel is of tremendous importance when evaluating the vessel integrity.Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process,but also may melt back.To simulate this configuration,encoun-tered in various industrial applications,one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase.The liquid phase may solidify in presence of low energetic source,while the solid phase may melt due to an intense heat flux from the high-temperature liquid.In the frame of the in-house legacy code,several simplifying assumptions(0D multi-layer discretization,instantaneous heat transfer via a quadratic temperature profile in solids)are made for the modelling of such phase changes.In the present work,these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition.The liquid phase is modeled with a 0D multi-layer approach.The 0D-liquid and 2D-solid mod-els are coupled by a Stefan like phase change interface model.Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available.Then more advanced situations(genu-ine multi-dimensional phase changes and an"industrial-like scenario")are simulated to verify the appropriate behavior of the obtained coupled simulation scheme. 展开更多
关键词 simulation of phase change FUSION SOLIDIFICATION 0D multi-layer model 2D heat conduction model Model coupling
下载PDF
Influence of water coupling coefficient on the blasting effect of red sandstone specimens 被引量:1
9
作者 Yang Li Renshu Yang +1 位作者 Yanbing Wang Dairui Fu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期148-166,共19页
This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation i... This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent. 展开更多
关键词 Water coupling coefficient Radial uncoupled charge Numerical simulation Fractal dimension
下载PDF
Numerical simulation of aircraft arresting process with an efficient full-scale rigid-flexible coupling dynamic model
10
作者 Haoyuan SHAO Daochun LI +3 位作者 Zi KAN Lanxi BI Zhuoer YAO Jinwu XIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期586-602,共17页
The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role... The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft. 展开更多
关键词 Carrier-based aircraft Deck landing rigid-flexible coupling dynamic model Finite element method Dynamic analysis
原文传递
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances
11
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling Radar stealth Thermal insulation Computer simulation technology
下载PDF
The Impact of Deformable Surrounding Rocks on Naturally-Fractured Reservoir Simulation
12
作者 Saeed Salimzadeh 《Journal of Civil Engineering and Architecture》 2024年第9期445-463,共19页
For the case of a fractured reservoir surrounded by deformable rocks, the appropriateness and applicability of the two common methods of coupling of flow and deformation, explicit (coupled) and implicit (uncoupled) me... For the case of a fractured reservoir surrounded by deformable rocks, the appropriateness and applicability of the two common methods of coupling of flow and deformation, explicit (coupled) and implicit (uncoupled) methods are investigated. The explicit formulation is capable of modelling surrounding media;while the implicit coupling is unable to do so as deformation vector does not appear as a primary variable in the formulation. The governing differential equations and the finite element approximation of the governing equations for each of the methods are presented. Spatial discretization is achieved using the Galerkin method, and temporal discretisation using the finite difference technique. In the explicit model, coupling between flow and deformation is captured through volumetric strain compatibility amongst the phases within the system. In the implicit model, this is achieved by defining the pore space storativity as a function of the formation compressibility and the compressibility of the fluid phases within the pore space. The impact of rock deformability on early, intermediate and late time responses of fractured reservoir is investigated through several numerical examples. Salient features of each formulation are discussed and highlighted. It is shown that the implicit model is unable to capture the constraining effects of a non-yielding, surrounding rock, leading to incorrect projections of reservoir production irrespective of the history matching strategy adopted. 展开更多
关键词 Reservoir engineering naturally fractured reservoirs coupled flow-deformation numerical simulation
下载PDF
Fluid simulation of the effect of a dielectric window with high temperature on plasma parameters in inductively coupled plasma
13
作者 李娜 韩道满 +3 位作者 张权治 刘旭辉 王英杰 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期51-61,共11页
To maintain the high-density plasma source in inductively coupled plasma(ICP),very high radiofrequency power is often delivered to the antenna,which can heat the dielectric windows near the antenna to high temperature... To maintain the high-density plasma source in inductively coupled plasma(ICP),very high radiofrequency power is often delivered to the antenna,which can heat the dielectric windows near the antenna to high temperature.This high temperature can modulate the plasma characteristics to a large degree.We thus study the effect of dielectric window temperature on plasma parameters in two different ICP structures based on COMSOL software.The distributions of various plasma species are examined at different dielectric window temperatures.The concentration of neutral gas is found to be largely modulated at high dielectric window temperature,which further affects the electron collision probability with neutrals and the electron temperature.However,the electron density profiles are barely affected by the dielectric window temperature,which is mainly concentrated at the center of the reactor due to the fixed power input and pressure. 展开更多
关键词 fluid simulation metastable argon dielectric window temperature inductively coupled plasma
下载PDF
Experimental and simulation studies on similitude design method for shock responses of beam-plate coupled structure
14
作者 Lei LI Zhong LUO +3 位作者 Fengxia HE Jilai ZHOU HuiMA HuiLI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期917-930,共14页
The similitude theory helps to understand the physical behaviors of large structures through scaled models. Several papers have studied the similitude of shock issues. However, the dynamic similitude for shock respons... The similitude theory helps to understand the physical behaviors of large structures through scaled models. Several papers have studied the similitude of shock issues. However, the dynamic similitude for shock responses of coupled structures is rarely incorporated in open studies. In this paper, scaling laws are derived for the shock responses and spectra of coupled structures. In the presented scaling laws, the geometric distortion and energy loss are considered. The ability of the proposed scaling laws is demonstrated in the simulation and experimental cases. In both cases, the similitude prediction for the prototype's time-domain waveform and spectrum is conducted with the scaled model and scaling laws. The simulation and experimental cases indicate that the predicted shock responses and spectra agree well with those of the prototype, which verifies the proposed scaling laws for predicting shock responses. 展开更多
关键词 partial similitude scaling law shock response coupled structure virtual mode synthesis simulation(VMSS) statistical energy analysis(SEA)
下载PDF
Modeling and Simulation of a Transmission Line Response to a 400 kV/400V Capacitor Coupled Substation
15
作者 Sinqobile Wiseman Nene Bolanle Tolulope Abe Agha Francis Nnachi 《Journal of Power and Energy Engineering》 2023年第12期1-14,共14页
The access to electricity in rural areas is extremely limited, but it is crucial for all citizens. The population in rural areas of sub-Saharan African (SSA) countries is generally low, making it economically unfeasib... The access to electricity in rural areas is extremely limited, but it is crucial for all citizens. The population in rural areas of sub-Saharan African (SSA) countries is generally low, making it economically unfeasible to implement traditional rural electrification (CRE) projects due to the high cost of establishing the necessary distribution infrastructure. To address this cost issue, one alternative technology for rural electrification (URE) that can be explored is the Capacitor Coupled Substation (CCS) technology. CCS is a cost-effective solution for supplying electricity to rural areas. The research is necessitated by the need to offer a cost-effective technology for supplying electricity to sparsely populated communities. This paper examines the impact on the transmission network when a 400 kV/400V CCS is connected to it. The system response when a CCS is connected to the network was modeled using MATLAB/Si-mulink. The results, based on the fixed load of 80 kW, showed negligible interference on the transmission line voltage. However, there was minor impact on the parameters downstream of the tapping point. These findings were further supported by introducing a fault condition to the CCS, which showed that interferences with the CCS could affect the overall stability of the transmission network downstream of the tapping node, similar to the behavior of an unstable load. 展开更多
关键词 Capacitor coupled Substation Conventional Rural Electrification Unconventional Rural Electrification Transmission Line Behavior Power System simulation
下载PDF
Numerical Simulation and Experimental Study of Heat-fluid-solid Coupling of Double Flapper-nozzle Servo Valve 被引量:18
16
作者 ZHAO Jianhua ZHOU Songlin +1 位作者 LU Xianghui GAO Dianrong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期1030-1038,共9页
The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo val... The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve. 展开更多
关键词 double flapper-nozzle servo valve heat-fluid-solid coupling numerical simulation warpage-deformation clamping stagnation zero position leakage
下载PDF
Oxidative coupling of methane in a fixed bed reactor over perovskite catalyst:A simulation study using experimental kinetic model 被引量:8
17
作者 Nakisa Yaghobi Mir Hamid Reza Ghoreishy 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期8-16,共9页
The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separat... The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio. 展开更多
关键词 oxidative coupling of methane simulation KINETICS fixed bed catalytic reactor ETHYLENE
下载PDF
Complete geometric nonlinear formulation for rigid-flexible coupling dynamics 被引量:4
18
作者 刘铸永 洪嘉振 刘锦阳 《Journal of Central South University》 SCIE EI CAS 2009年第1期119-124,共6页
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate... A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed. 展开更多
关键词 flexible beam rigid-flexible coupling dynamic modeling numerical simulation
下载PDF
Ride comfort evaluation for road vehicle based on rigid-flexible coupling multibody dynamics 被引量:11
19
作者 Guangqiang Wu Guodong Fan Jianbo Guo 《Theoretical & Applied Mechanics Letters》 CAS 2013年第1期39-43,共5页
In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while... In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while in the later model, the flexible rear suspension is built based on the finite element method (FEM) and mode superposition method, in which the deformations of the components are considered. The ride simulations with different speeds are carried out on a 3D digitalized road, and the weighted root mean square (RMS) of accelerations on the seat surface,backrest and at the feet are calculated. The comparison between the responses of the rigid and rigid-flexible coupling multibody models shows that the flexibility of the vehicle parts significantly affects the accelerations at each position, and it is necessary to take the flexibility effects into account for the assessment of ride comfort. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301304] 展开更多
关键词 ride comfort rigid-flexible coupling multibody system
下载PDF
Numerical simulation of compound media coupling mechanism of deep mining overburden strata 被引量:4
20
作者 YANG Fan, CHEN Shuang School of Geometrics, Liaoning Technical University, Fuxin 123000, China 《中国有色金属学会会刊:英文版》 CSCD 2011年第S3期631-636,共6页
Aiming at the regularity of deep mining strata movement, through the application of plate theory and discrete medium theory in establishing the coupling model of the deep mining strata composite medium, the continuum ... Aiming at the regularity of deep mining strata movement, through the application of plate theory and discrete medium theory in establishing the coupling model of the deep mining strata composite medium, the continuum media and the non-continuum media were coupled into the compound media giant system, and the stress of compound layer and strain coupling relationship were established. The accuracy of forecasting surface subsidence in deep mining conditions was improved. The deep mining was simulated through 3-D numerical value by the FLAC3D finite difference software, and the coupling relationship and coupling layer in the strata composite layer were analyzed. The results show that, under the deep mining condition, the coupling zone is in the position of coal seam roof with the thickness of 15-20 times, on which, the stress-strain has much difference on the coupling zone. Considering interlayer effect of coupling zone can improve the prediction precision of surface subsidence. 展开更多
关键词 deep MINING NUMERICAL simulation coupling mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部