The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of ...The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of EVA foam was also evaluated by scanning electron microscopy(SEM).The results show that Blatz-Ko and Neo-Hookean model can fit the curve at 5%and 8%strain,respectively.The Mooney model can fit the curve at 50%strain.The modulus of rigidity evaluated from Mooney model is 0.0814±0.0027 MPa.The structure of EVA foam from SEM image shows that EVA structure is a closed cell with homogeneous porous structure.From the result,it is found that Mooney model can adjust the data better than other models.This model can be applied for mechanical response prediction of EVA foam and also for reference value in engineering application.展开更多
In this study,the flexural rigidity of a honeycomb consisting of regular hexagonal cells is investigated.It is found that the honeycomb bending can not be evaluated by using the equivalent elastic moduli obtained from...In this study,the flexural rigidity of a honeycomb consisting of regular hexagonal cells is investigated.It is found that the honeycomb bending can not be evaluated by using the equivalent elastic moduli obtained from the in-plane deformation because the moments acting on the inclined cell wall are different for in-plane deformation and bending deformation.Based on the fact that the inclined wall is twisted under the condition of the rotation angle in both connection edges being zero,a theoretical technique for calculating the flexural rigidity of honeycombs is proposed,and the validity of the present analysis is demonstrated by numerical results obtained by BFM.展开更多
In order to quantitatively study the seismic absorption effect of the cushion on a superstructure, a numerical simulation and parametric study are carried out on the overall FEA model of a rigid-pile composite foundat...In order to quantitatively study the seismic absorption effect of the cushion on a superstructure, a numerical simulation and parametric study are carried out on the overall FEA model of a rigid-pile composite foundation in ABAQUS. A simulation of a shaking table test on a rigid mass block is first completed with ABAQUS and EERA, and the effectiveness of the Drucker-Prager constitutive model and the finite-infinite element coupling method is proved. Dynamic time-history analysis of the overall model under frequent and rare earthquakes is carried out using seismic waves from the El Centro, Kobe, and Bonds earthquakes. The different responses of rigid-pile composite foundations and pile-raft foundations are discussed. Furthermore, the influence of thickness and modulus of cushion, and ground acceleration on the seismic absorption effect of the cushion are analyzed. The results show that: 1) the seismic absorption effect of a cushion is good under rare earthquakes, with an absorption ratio of about 0.85; and 2) the seismic absorption effect is strongly affected by cushion thickness and ground acceleration.展开更多
基金supported by grants funded by Department of Mechanical Engineering,Faculty of Engineering,Chiang Mai University and the Graduate School of Chiang Mai University.
文摘The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of EVA foam was also evaluated by scanning electron microscopy(SEM).The results show that Blatz-Ko and Neo-Hookean model can fit the curve at 5%and 8%strain,respectively.The Mooney model can fit the curve at 50%strain.The modulus of rigidity evaluated from Mooney model is 0.0814±0.0027 MPa.The structure of EVA foam from SEM image shows that EVA structure is a closed cell with homogeneous porous structure.From the result,it is found that Mooney model can adjust the data better than other models.This model can be applied for mechanical response prediction of EVA foam and also for reference value in engineering application.
文摘In this study,the flexural rigidity of a honeycomb consisting of regular hexagonal cells is investigated.It is found that the honeycomb bending can not be evaluated by using the equivalent elastic moduli obtained from the in-plane deformation because the moments acting on the inclined cell wall are different for in-plane deformation and bending deformation.Based on the fact that the inclined wall is twisted under the condition of the rotation angle in both connection edges being zero,a theoretical technique for calculating the flexural rigidity of honeycombs is proposed,and the validity of the present analysis is demonstrated by numerical results obtained by BFM.
基金This project,No.2011ZA05,is supported by the State Key Laboratory of Subtropical Building Science,South China University of Technology,Guangzhou,China
文摘In order to quantitatively study the seismic absorption effect of the cushion on a superstructure, a numerical simulation and parametric study are carried out on the overall FEA model of a rigid-pile composite foundation in ABAQUS. A simulation of a shaking table test on a rigid mass block is first completed with ABAQUS and EERA, and the effectiveness of the Drucker-Prager constitutive model and the finite-infinite element coupling method is proved. Dynamic time-history analysis of the overall model under frequent and rare earthquakes is carried out using seismic waves from the El Centro, Kobe, and Bonds earthquakes. The different responses of rigid-pile composite foundations and pile-raft foundations are discussed. Furthermore, the influence of thickness and modulus of cushion, and ground acceleration on the seismic absorption effect of the cushion are analyzed. The results show that: 1) the seismic absorption effect of a cushion is good under rare earthquakes, with an absorption ratio of about 0.85; and 2) the seismic absorption effect is strongly affected by cushion thickness and ground acceleration.