Discrete fracture models are used for investigating precise processes of groundwater flow in fractured rocks,while a disc-shaped parallel-plates model for a single fracture is more reasonable and efficient for computa...Discrete fracture models are used for investigating precise processes of groundwater flow in fractured rocks,while a disc-shaped parallel-plates model for a single fracture is more reasonable and efficient for computational treatments.The flow velocity has a large spatial differentiation which is more likely to produce non-linear flow and additional head losses on and nearby intersections in such shaped fractures,therefore it is necessary to understand and quantify them.In this study,both laboratory experiments and numerical simulations were performed to investigate the total head loss on and nearby the intersections as well as the local head loss exactly on the intersections,which were not usually paid sufficient attention or even ignored.The investigation results show that these two losses account for 29.17%-84.97%and 0-73.57%of the entire total head loss in a fracture,respectively.As a result,they should be necessarily considered for groundwater modeling in fractured rocks.Furthermore,both head losses become larger when aperture and flow rate increase and intersection length decreases.Particularly,the ratios of these two head losses to the entire total head loss in a fracture could be well statistically explained by power regression equations with variables of aperture,intersection length,and flow rates,both of which achieved high coefficients of determination.It could be feasible through this type of study to provide a way on how to adjust the groundwater head from those obtained by numerical simulations based on the traditional linear flow model.Finally,it is practicable and effective to implement the investigation approach combining laboratory experiments with numerical simulations for quantifying the head losses on and nearby the intersections between disc-shaped fractures.展开更多
Meteorological conditions are vital to PM_(2.5)and ozone(O_(3))complex pollution.Herein,the T-mode principal com-ponent analysis method was employed to objectively classify the 925-hPa geopotential height field of Don...Meteorological conditions are vital to PM_(2.5)and ozone(O_(3))complex pollution.Herein,the T-mode principal com-ponent analysis method was employed to objectively classify the 925-hPa geopotential height field of Dongying from 2017 to 2022.Synoptic patterns associated with four pollution types-namely,PM_(2.5)-only pollution,O_(3)-only pollution,Co-occurring of PM_(2.5)and O_(3)pollution,Non-occurring of PM_(2.5)and O_(3)pollution-were characterized at different time scales.The results indicated that synoptic classes conducive to PM_(2.5)-only pollution were“high-pressure top front”,“offshore high-pressure rear”,and“high-pressure inside”,while those conducive to O_(3)-only pollution were“offshore high-pressure rear”,“subtropical high”,and“high and low systems”.The Co-occurring of PM_(2.5)and O_(3)pollution were influenced by high pressure,and the Non-occurring of PM_(2.5)and O_(3)pollution were linked to precipitation and strong northerly winds.The variation in dominant synoptic patterns is crucial in the frequency changes of the four pollution types,which was further validated through the analysis of typical cases.Under the favorable meteorological conditions of high-pressure control with strong northerly winds or a subtropical high and inverted trough both with strong precipitation,there is potential to achieve coordinated control of PM_(2.5)and O_(3)in Dongying.Additionally,measures like artificially manipulating local humidity could be adopted to alleviate pollution levels.This study reveals the importance of comprehending the meteorological factors contributing to the formation of PM_(2.5)and O_(3)complex pollution for the improvement of urban air quality in the Bohai Rim region of China when emissions are high and the concentration of air pollutants exhibits high meteorological sensitivity.展开更多
Rim101是一个具有锌指结构的转录因子,在调控酿酒酵母细胞耐受碱性和高盐环境、钙离子稳态、细胞分裂以及硒毒性方面起作用。前人研究结果显示,细胞周期依赖性激酶基因PHO85的缺失,导致Rim101蛋白在细胞核内积累。为了探索Rim101亚细胞...Rim101是一个具有锌指结构的转录因子,在调控酿酒酵母细胞耐受碱性和高盐环境、钙离子稳态、细胞分裂以及硒毒性方面起作用。前人研究结果显示,细胞周期依赖性激酶基因PHO85的缺失,导致Rim101蛋白在细胞核内积累。为了探索Rim101亚细胞定位的新调节因子,通过荧光显微镜技术对酿酒酵母细胞基因组中编码磷酸酶的73个非必需基因缺失株和编码激酶的139个非必需基因缺失株进行了筛选,发现编码磷脂酰肌醇磷酸(Ptd Ins P)的磷酸酶Sac1调控Rim101的亚细胞定位。展开更多
基金supported by National Key Research and Development Program of China(No.2020 YFC1807100,No.2019YFC1806205)National Natural Science Foundation of China(No.41572240)。
文摘Discrete fracture models are used for investigating precise processes of groundwater flow in fractured rocks,while a disc-shaped parallel-plates model for a single fracture is more reasonable and efficient for computational treatments.The flow velocity has a large spatial differentiation which is more likely to produce non-linear flow and additional head losses on and nearby intersections in such shaped fractures,therefore it is necessary to understand and quantify them.In this study,both laboratory experiments and numerical simulations were performed to investigate the total head loss on and nearby the intersections as well as the local head loss exactly on the intersections,which were not usually paid sufficient attention or even ignored.The investigation results show that these two losses account for 29.17%-84.97%and 0-73.57%of the entire total head loss in a fracture,respectively.As a result,they should be necessarily considered for groundwater modeling in fractured rocks.Furthermore,both head losses become larger when aperture and flow rate increase and intersection length decreases.Particularly,the ratios of these two head losses to the entire total head loss in a fracture could be well statistically explained by power regression equations with variables of aperture,intersection length,and flow rates,both of which achieved high coefficients of determination.It could be feasible through this type of study to provide a way on how to adjust the groundwater head from those obtained by numerical simulations based on the traditional linear flow model.Finally,it is practicable and effective to implement the investigation approach combining laboratory experiments with numerical simulations for quantifying the head losses on and nearby the intersections between disc-shaped fractures.
基金jointly supported by the Ministry of Ecology and Environment of the People’s Republic of China[grant number DQGG202121]the Dongying Ecological and Environmental Bureau[grant number 2021DFKY-0779]。
文摘Meteorological conditions are vital to PM_(2.5)and ozone(O_(3))complex pollution.Herein,the T-mode principal com-ponent analysis method was employed to objectively classify the 925-hPa geopotential height field of Dongying from 2017 to 2022.Synoptic patterns associated with four pollution types-namely,PM_(2.5)-only pollution,O_(3)-only pollution,Co-occurring of PM_(2.5)and O_(3)pollution,Non-occurring of PM_(2.5)and O_(3)pollution-were characterized at different time scales.The results indicated that synoptic classes conducive to PM_(2.5)-only pollution were“high-pressure top front”,“offshore high-pressure rear”,and“high-pressure inside”,while those conducive to O_(3)-only pollution were“offshore high-pressure rear”,“subtropical high”,and“high and low systems”.The Co-occurring of PM_(2.5)and O_(3)pollution were influenced by high pressure,and the Non-occurring of PM_(2.5)and O_(3)pollution were linked to precipitation and strong northerly winds.The variation in dominant synoptic patterns is crucial in the frequency changes of the four pollution types,which was further validated through the analysis of typical cases.Under the favorable meteorological conditions of high-pressure control with strong northerly winds or a subtropical high and inverted trough both with strong precipitation,there is potential to achieve coordinated control of PM_(2.5)and O_(3)in Dongying.Additionally,measures like artificially manipulating local humidity could be adopted to alleviate pollution levels.This study reveals the importance of comprehending the meteorological factors contributing to the formation of PM_(2.5)and O_(3)complex pollution for the improvement of urban air quality in the Bohai Rim region of China when emissions are high and the concentration of air pollutants exhibits high meteorological sensitivity.
文摘Rim101是一个具有锌指结构的转录因子,在调控酿酒酵母细胞耐受碱性和高盐环境、钙离子稳态、细胞分裂以及硒毒性方面起作用。前人研究结果显示,细胞周期依赖性激酶基因PHO85的缺失,导致Rim101蛋白在细胞核内积累。为了探索Rim101亚细胞定位的新调节因子,通过荧光显微镜技术对酿酒酵母细胞基因组中编码磷酸酶的73个非必需基因缺失株和编码激酶的139个非必需基因缺失株进行了筛选,发现编码磷脂酰肌醇磷酸(Ptd Ins P)的磷酸酶Sac1调控Rim101的亚细胞定位。