?The multiplication semigroup of strongly regular ring R in the light of semigroup is researched,hence some properties of strongly regular rings are obtained. The non-division strongly regular ring R is anilpotent sem...?The multiplication semigroup of strongly regular ring R in the light of semigroup is researched,hence some properties of strongly regular rings are obtained. The non-division strongly regular ring R is anilpotent semisimple ring without identity element. It is neither the Artin ring nor the Noether ring. The setidempotents of ring R is an infinite set without the maximum and minimal conditions,it is a unions of someorder sets and hai a non-well-ordered order set at least.展开更多
首先讨论GCN环的一些性质,其次证明了如下结果:1)设R为一个环,如果R上的二阶上三角矩阵环为GCN环,则R为约化环;2)GCN的exchange环R有稳定秩1;3)R为交换环当且仅当T={a 0 b c0 a 0 da,b,c,d,0 0 a e0 0 0ae∈R}是强GCN环;4)GCN的exchang...首先讨论GCN环的一些性质,其次证明了如下结果:1)设R为一个环,如果R上的二阶上三角矩阵环为GCN环,则R为约化环;2)GCN的exchange环R有稳定秩1;3)R为交换环当且仅当T={a 0 b c0 a 0 da,b,c,d,0 0 a e0 0 0ae∈R}是强GCN环;4)GCN的exchange环是左quasi-duo环.展开更多
文摘?The multiplication semigroup of strongly regular ring R in the light of semigroup is researched,hence some properties of strongly regular rings are obtained. The non-division strongly regular ring R is anilpotent semisimple ring without identity element. It is neither the Artin ring nor the Noether ring. The setidempotents of ring R is an infinite set without the maximum and minimal conditions,it is a unions of someorder sets and hai a non-well-ordered order set at least.
文摘首先讨论GCN环的一些性质,其次证明了如下结果:1)设R为一个环,如果R上的二阶上三角矩阵环为GCN环,则R为约化环;2)GCN的exchange环R有稳定秩1;3)R为交换环当且仅当T={a 0 b c0 a 0 da,b,c,d,0 0 a e0 0 0ae∈R}是强GCN环;4)GCN的exchange环是左quasi-duo环.