In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical mod...In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification.展开更多
Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic feature...Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials.展开更多
A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-10...A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-100%D_(2)O.A proposed structure of tungsten scatterers in an aluminum host is studied.In order to detect the target material,a cavity region is considered as a sound wave resonator in which the target material with different concentrations of D_(2)O is embedded.By changing the concentration of D_(2)O in the H_(2)O-D_(2)O mixture,the resonance frequency undergoes a frequency shift.Each 1%change in D_(2)O concentration in the H_(2)O-D_(2)O mixture causes a frequency change of about 120 Hz.The finite element method is used as the numerical method to calculate and analyze the natural frequencies and transmission spectra of the proposed sensor.The performance evaluation index shows a high Q factor up to 1475758 and a high sensitivity up to 13075,which are acceptable values for sensing purposes.The other figures of merit related to the detection performance also indicate high-quality performance of the designed sensor.展开更多
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi...The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.展开更多
Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies.A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtai...Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies.A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtain phonons with ultra-high frequency(~THz).However,the optical field cannot be effectively restricted when the diameter of the GaAs/AlAs pillar microcavity decreases below the diffraction limit of light.Here,we design a system that combines Ag nanocav-ity with GaAs/AlAs phononic superlattices,where phonons with the frequency of 4.2 THz can be confined in a pillar with~4 nm diameter.The Q_(c)/V reaches 0.22 nm^(-3),which is~80 times that of the photonic crystal(PhC)nanobeam and~100 times that of the hybrid point-defect PhC bowtie plasmonic nanocavity,where Q_(c) is optical quality factor and V is mode volume.The optome-chanical single-photon coupling strength can reach 12 MHz,which is an order of magnitude larger than that of the PhC nanobeam.In addition,the mechanical zero-point fluctuation amplitude is 85 fm and the efficient mass is 0.27 zg,which is much smaller than the PhC nanobeam.The phononic superlattice-Ag nanocavity optomechanical devices hold great potential for applications in the field of integrated quantum optomechanics,quantum information,and terahertz-light transducer.展开更多
This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal(PnC)with a piezoelectric defect and an analytical...This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal(PnC)with a piezoelectric defect and an analytical approach that accelerates the predictions of such wave-generation performance.The proposed analytical model is based on the Euler-Bernoulli beam theory.The proposed analytical approach,inspired by the transfer matrix and S-parameter methods,is used to perform band-structure and time-harmonic analyses.A comparison of the results of the proposed approach with those of the finite element method validates the high predictive capability and time efficiency of the proposed model.A case study is explored;the results demonstrate an almost ten-fold amplification of the velocity amplitudes of flexural waves leaving at a defect-band frequency,compared with a system without the PnC.Moreover,design guidelines for piezoelectric-defect-introduced PnCs are provided by analyzing the changes in wave-generation performance that arise depending on the defect location.展开更多
The size-dependent band structure of an Si phononic crystal(PnC)slab with an air hole is studied by utilizing the non-classic wave equations of the nonlocal strain gradient theory(NSGT).The three-dimensional(3D)non-cl...The size-dependent band structure of an Si phononic crystal(PnC)slab with an air hole is studied by utilizing the non-classic wave equations of the nonlocal strain gradient theory(NSGT).The three-dimensional(3D)non-classic wave equations for the anisotropic material are derived according to the differential form of the NSGT.Based on the the general form of partial differential equation modules in COMSOL,a method is proposed to solve the non-classic wave equations.The bands of the in-plane modes and mixed modes are identified.The in-plane size effect and thickness effect on the band structure of the PnC slab are compared.It is found that the thickness effect only acts on the mixed modes.The relative width of the band gap is widened by the thickness effect.The effects of the geometric parameters on the thickness effect of the mixed modes are further studied,and a defect is introduced to the PnC supercell to reveal the influence of the size effects with stiffness-softening and stiffness-hardening on the defect modes.This study paves the way for studying and designing PnC slabs at nano-scale.展开更多
Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is estab...Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is established.A perturbation-based interval finite element method(P-IFEM)and an affine-based interval finite element method(A-IFEM)are proposed to study the dynamic response of this interval phononic crystal beam,based on which an interval vibration transmission analysis can be easily implemented and the safe bandgap can be defined.Finally,two numerical examples are investigated to demonstrate the effectiveness and accuracy of the P-IFEM and A-IFEM.Results show that the safe bandgap range may even decrease by 10%compared with the deterministic bandgap without considering the uncertainties.展开更多
By using the plane-wave-expansion method, the band structure of three-dimension phononic crystals was calculated, in which the cuboid scatterers were arranged in a host with a face-centered-cubic (FCC) structure.The...By using the plane-wave-expansion method, the band structure of three-dimension phononic crystals was calculated, in which the cuboid scatterers were arranged in a host with a face-centered-cubic (FCC) structure.The influences of a few factors such as the component materials, the filling fraction of scatterers and the ratio (RHL) of the scatterer's height to its length on the band-gaps of phononic crystals were investigated.It is found that in the three-dimension solid phononic crystals with FCC structure, the optimum case to obtain band-gaps is to embed high-velocity and high-density scatterers in a low-velocity and low-density host. The maximum value of band-gap can be obtained when the filling fraction is in the middle value. It is also found that the symmetry of the scatterers strongly influences the band-gaps. For RHL>1, the width of the band-gap decreases as RHL increases. On the contrary, the width of the band-gap increases with the increase of RHL when RHL is smaller than 1.展开更多
Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band ...Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies.展开更多
Based on the variational theory, a wavelet-based numerical method is developed to calculate the defect states of acoustic waves in two-dimensional phononic crystals with point and line defects. The supercell technique...Based on the variational theory, a wavelet-based numerical method is developed to calculate the defect states of acoustic waves in two-dimensional phononic crystals with point and line defects. The supercell technique is applied. By expanding the displacement field and the material constants (mass density and elastic stiffness) in periodic wavelets, the explicit formulations of an eigenvalue problem for the plane harmonic bulk waves in such a phononic structure are derived. The point and line defect states in solid-liquid and solid-solid systems are calculated. Comparisons of the present results with those measured experimentally or those from the plane wave expansion method show that the present method can yield accurate results with faster convergence and less computing time.展开更多
The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propag...The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phononic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.展开更多
The propagation characteristics of flexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined a...The propagation characteristics of flexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined analysis yields phase constant surfaces, which predict the location and the extension of band gaps, as well as the directions and the regions of wave propagation at assigned frequencies. The predictions are validated by computation and experimental analysis of the harmonic responses of a finite structure with 11 × 11 unit cells. The flexural wave is localized at the point of excitation in band gaps, while the directional behaviour occurs at particular frequencies in pass bands. These studies provide guidelines to designing periodic structures for vibration attenuation.展开更多
In this paper, a method based on the Dirichlet- to-Neumann map is developed for bandgap calculation of mixed in-plane waves propagating in 2D phononic crystals with square and triangular lattices. The method expresses...In this paper, a method based on the Dirichlet- to-Neumann map is developed for bandgap calculation of mixed in-plane waves propagating in 2D phononic crystals with square and triangular lattices. The method expresses the scattered fields in a unit cell as the cylindrical wave expansions and imposes the Bloch condition on the boundary of the unit cell. The Dirichlet-to-Neumann (DtN) map is applied to obtain a linear eigenvalue equation, from which the Bloch wave vectors along the irreducible Brillouin zone are calculated for a given frequency. Compared with other methods, the present method is memory-saving and time-saving. It can yield accurate results with fast convergence for various material combinations including those with large acoustic mismatch without extra computational cost. The method is also efficient for mixed fluid-solid systems because it considers the different wave modes in the fluid and solid as well as the proper fluid-solid interface condition.展开更多
In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation...In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch-Floquet theorem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the planewave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectricity with the larger lattice constant ratios and the filling fractions.展开更多
The wave propagation is studied in two-dimensional disordered piezoelectric phononic crystals using the finite-difference time-domain (FDTD) method. For different cases of disorder, the transmission coefficients are...The wave propagation is studied in two-dimensional disordered piezoelectric phononic crystals using the finite-difference time-domain (FDTD) method. For different cases of disorder, the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of. size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder. In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.展开更多
The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffa...The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sánchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure, and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case.展开更多
The super-cell plane wave expansion method is employed to calculate band structures for the design of a siliconbased one-dimensional phononic crystal plate with large absolute forbidden bands. In this method, a low im...The super-cell plane wave expansion method is employed to calculate band structures for the design of a siliconbased one-dimensional phononic crystal plate with large absolute forbidden bands. In this method, a low impedance medium is introduced to replace the free stress boundary, which largely reduces the computational complexity. The dependence of band gaps on structural parameters is investigated in detail. To prove the validity of the super-cell plane wave expansion, the transmitted power spectra of the Lamb wave are calculated by using a finite element method. With the detailed computation, the band-gap of a one-dimensional plate can be designed as required with appropriate structural parameters, which provides a guide to the fabrication of a Lamb wave phononic crystal.展开更多
Band gaps of 2D phononic crystal with orthotropic cylindrical fillers embedded in the isotropic host are studied in this paper. Two kinds of periodic structures, namely, the square lattice and the triangle lattice, ar...Band gaps of 2D phononic crystal with orthotropic cylindrical fillers embedded in the isotropic host are studied in this paper. Two kinds of periodic structures, namely, the square lattice and the triangle lattice, are considered. For anisotropic phononic crystal, band gaps not only depend on the periodic lattice but also the angle between the symmetry axis of orthotropic material and that of the periodic structure. Rotating these cylindrical fillers makes the angle changing continuously; as a result, pass bands and forbidden bands of the phononic crystal are changed. The plane wave expansion method is used to reduce the band gap problem to an eigenvalue problem. The numerical example is given for YBCO/Epoxy composites. The location and the width of band gaps are estimated for different rotating angles. The influence of anisotropy on band gaps is discussed based on numerical results.展开更多
A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed o...A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62204112,12174240,and 11874253)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220774).
文摘In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0211400)the State Key Program of the National Natural Science of China(Grant No.11834008)+2 种基金the National Natural Science Foundation of China(Grant Nos.12174192,12174188,and 11974176)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202410)the Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701).
文摘Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials.
文摘A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-100%D_(2)O.A proposed structure of tungsten scatterers in an aluminum host is studied.In order to detect the target material,a cavity region is considered as a sound wave resonator in which the target material with different concentrations of D_(2)O is embedded.By changing the concentration of D_(2)O in the H_(2)O-D_(2)O mixture,the resonance frequency undergoes a frequency shift.Each 1%change in D_(2)O concentration in the H_(2)O-D_(2)O mixture causes a frequency change of about 120 Hz.The finite element method is used as the numerical method to calculate and analyze the natural frequencies and transmission spectra of the proposed sensor.The performance evaluation index shows a high Q factor up to 1475758 and a high sensitivity up to 13075,which are acceptable values for sensing purposes.The other figures of merit related to the detection performance also indicate high-quality performance of the designed sensor.
基金Project(51978585)supported by the National Natural Science Foundation,ChinaProject(2022YFB2603404)supported by the National Key Research and Development Program,China+1 种基金Project(U1734207)supported by the High-speed Rail Joint Fund Key Projects of Basic Research,ChinaProject(2023NSFSC1975)supported by the Sichuan Nature and Science Foundation Innovation Research Group Project,China。
文摘The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.
基金J.Z.acknowledges National Natural Science Foundation of China(12074371)CAS Interdisciplinary Innovation Team,Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)Key-Area Research and Development Program of Guangdong Province(Grant No.2018B030329001).
文摘Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies.A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtain phonons with ultra-high frequency(~THz).However,the optical field cannot be effectively restricted when the diameter of the GaAs/AlAs pillar microcavity decreases below the diffraction limit of light.Here,we design a system that combines Ag nanocav-ity with GaAs/AlAs phononic superlattices,where phonons with the frequency of 4.2 THz can be confined in a pillar with~4 nm diameter.The Q_(c)/V reaches 0.22 nm^(-3),which is~80 times that of the photonic crystal(PhC)nanobeam and~100 times that of the hybrid point-defect PhC bowtie plasmonic nanocavity,where Q_(c) is optical quality factor and V is mode volume.The optome-chanical single-photon coupling strength can reach 12 MHz,which is an order of magnitude larger than that of the PhC nanobeam.In addition,the mechanical zero-point fluctuation amplitude is 85 fm and the efficient mass is 0.27 zg,which is much smaller than the PhC nanobeam.The phononic superlattice-Ag nanocavity optomechanical devices hold great potential for applications in the field of integrated quantum optomechanics,quantum information,and terahertz-light transducer.
基金supported by the Basic Science Research Program through the National Research Foundation of Koreafunded by the Ministry of Education(No.2022R1I1A1A0105640611)。
文摘This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal(PnC)with a piezoelectric defect and an analytical approach that accelerates the predictions of such wave-generation performance.The proposed analytical model is based on the Euler-Bernoulli beam theory.The proposed analytical approach,inspired by the transfer matrix and S-parameter methods,is used to perform band-structure and time-harmonic analyses.A comparison of the results of the proposed approach with those of the finite element method validates the high predictive capability and time efficiency of the proposed model.A case study is explored;the results demonstrate an almost ten-fold amplification of the velocity amplitudes of flexural waves leaving at a defect-band frequency,compared with a system without the PnC.Moreover,design guidelines for piezoelectric-defect-introduced PnCs are provided by analyzing the changes in wave-generation performance that arise depending on the defect location.
基金Project supported by the National Natural Science Foundation of China(No.11872186)the Fundamental Research Funds for the Central Universities of China(No.HUST:2016JCTD114)。
文摘The size-dependent band structure of an Si phononic crystal(PnC)slab with an air hole is studied by utilizing the non-classic wave equations of the nonlocal strain gradient theory(NSGT).The three-dimensional(3D)non-classic wave equations for the anisotropic material are derived according to the differential form of the NSGT.Based on the the general form of partial differential equation modules in COMSOL,a method is proposed to solve the non-classic wave equations.The bands of the in-plane modes and mixed modes are identified.The in-plane size effect and thickness effect on the band structure of the PnC slab are compared.It is found that the thickness effect only acts on the mixed modes.The relative width of the band gap is widened by the thickness effect.The effects of the geometric parameters on the thickness effect of the mixed modes are further studied,and a defect is introduced to the PnC supercell to reveal the influence of the size effects with stiffness-softening and stiffness-hardening on the defect modes.This study paves the way for studying and designing PnC slabs at nano-scale.
基金the National Natural Science Foundation of China(Nos.12272172 and 11847009)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.22KJB580005)+1 种基金the Youth Talent Promotion Project from China Association for Science and Technology(No.2022QNRC001)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China。
文摘Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is established.A perturbation-based interval finite element method(P-IFEM)and an affine-based interval finite element method(A-IFEM)are proposed to study the dynamic response of this interval phononic crystal beam,based on which an interval vibration transmission analysis can be easily implemented and the safe bandgap can be defined.Finally,two numerical examples are investigated to demonstrate the effectiveness and accuracy of the P-IFEM and A-IFEM.Results show that the safe bandgap range may even decrease by 10%compared with the deterministic bandgap without considering the uncertainties.
基金This work was supported by the Natural Science Foundation of Hu'nan Province (Grant No. 00JJY2072) the Foundation of Educational Committee of Hu'nan Province (Grant No. 01B019).
文摘By using the plane-wave-expansion method, the band structure of three-dimension phononic crystals was calculated, in which the cuboid scatterers were arranged in a host with a face-centered-cubic (FCC) structure.The influences of a few factors such as the component materials, the filling fraction of scatterers and the ratio (RHL) of the scatterer's height to its length on the band-gaps of phononic crystals were investigated.It is found that in the three-dimension solid phononic crystals with FCC structure, the optimum case to obtain band-gaps is to embed high-velocity and high-density scatterers in a low-velocity and low-density host. The maximum value of band-gap can be obtained when the filling fraction is in the middle value. It is also found that the symmetry of the scatterers strongly influences the band-gaps. For RHL>1, the width of the band-gap decreases as RHL increases. On the contrary, the width of the band-gap increases with the increase of RHL when RHL is smaller than 1.
基金Project supported by the National Natural Science Foundation of China (Grant No 50575222) and the State Key Development Program for Basic Research of China (Grant No 51307).
文摘Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies.
基金the National Natural Science Foundation of China(No.10632020)the German Research Foundation(No.ZH 15/11-1)jointly by the China Scholarship Council and the German Academic Exchange Service(No.D/08/01795).
文摘Based on the variational theory, a wavelet-based numerical method is developed to calculate the defect states of acoustic waves in two-dimensional phononic crystals with point and line defects. The supercell technique is applied. By expanding the displacement field and the material constants (mass density and elastic stiffness) in periodic wavelets, the explicit formulations of an eigenvalue problem for the plane harmonic bulk waves in such a phononic structure are derived. The point and line defect states in solid-liquid and solid-solid systems are calculated. Comparisons of the present results with those measured experimentally or those from the plane wave expansion method show that the present method can yield accurate results with faster convergence and less computing time.
基金supported by the National Natural Science Foundation of China(No.10632020).
文摘The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phononic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.
基金Project supported by the National Natural Science Foundation of China (Grant No 50875255)
文摘The propagation characteristics of flexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined analysis yields phase constant surfaces, which predict the location and the extension of band gaps, as well as the directions and the regions of wave propagation at assigned frequencies. The predictions are validated by computation and experimental analysis of the harmonic responses of a finite structure with 11 × 11 unit cells. The flexural wave is localized at the point of excitation in band gaps, while the directional behaviour occurs at particular frequencies in pass bands. These studies provide guidelines to designing periodic structures for vibration attenuation.
基金supported by the National Natural Science Foundation of China(51178037,10632020)the 973 State Key Development Program for Basic Research of China(2010CB732104)
文摘In this paper, a method based on the Dirichlet- to-Neumann map is developed for bandgap calculation of mixed in-plane waves propagating in 2D phononic crystals with square and triangular lattices. The method expresses the scattered fields in a unit cell as the cylindrical wave expansions and imposes the Bloch condition on the boundary of the unit cell. The Dirichlet-to-Neumann (DtN) map is applied to obtain a linear eigenvalue equation, from which the Bloch wave vectors along the irreducible Brillouin zone are calculated for a given frequency. Compared with other methods, the present method is memory-saving and time-saving. It can yield accurate results with fast convergence for various material combinations including those with large acoustic mismatch without extra computational cost. The method is also efficient for mixed fluid-solid systems because it considers the different wave modes in the fluid and solid as well as the proper fluid-solid interface condition.
基金the National Natural Science Foundation of China (10672017 and 10632020)
文摘In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch-Floquet theorem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the planewave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectricity with the larger lattice constant ratios and the filling fractions.
基金supported by the National Natural Science Foundation of China(Nos.10672017 and 10632020).supports provided by the China Postdoctoral Science Foundation,Heilongjiang Province Postdoctoral Science Foundation
文摘The wave propagation is studied in two-dimensional disordered piezoelectric phononic crystals using the finite-difference time-domain (FDTD) method. For different cases of disorder, the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of. size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder. In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.
基金Project supported by National Natural Science Foundation of China (Grant No 50575222) and the State Key Development Program for Basic Research of China (Grant No 51307).
文摘The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sánchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure, and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874086 and 10834009)the National Basic Research Program of China (Grant No. 2010CB327803)
文摘The super-cell plane wave expansion method is employed to calculate band structures for the design of a siliconbased one-dimensional phononic crystal plate with large absolute forbidden bands. In this method, a low impedance medium is introduced to replace the free stress boundary, which largely reduces the computational complexity. The dependence of band gaps on structural parameters is investigated in detail. To prove the validity of the super-cell plane wave expansion, the transmitted power spectra of the Lamb wave are calculated by using a finite element method. With the detailed computation, the band-gap of a one-dimensional plate can be designed as required with appropriate structural parameters, which provides a guide to the fabrication of a Lamb wave phononic crystal.
基金supported by the National Natural Science Foundation of China (No.10672019)
文摘Band gaps of 2D phononic crystal with orthotropic cylindrical fillers embedded in the isotropic host are studied in this paper. Two kinds of periodic structures, namely, the square lattice and the triangle lattice, are considered. For anisotropic phononic crystal, band gaps not only depend on the periodic lattice but also the angle between the symmetry axis of orthotropic material and that of the periodic structure. Rotating these cylindrical fillers makes the angle changing continuously; as a result, pass bands and forbidden bands of the phononic crystal are changed. The plane wave expansion method is used to reduce the band gap problem to an eigenvalue problem. The numerical example is given for YBCO/Epoxy composites. The location and the width of band gaps are estimated for different rotating angles. The influence of anisotropy on band gaps is discussed based on numerical results.
基金supported by the National Natural Science Foundation of China(Nos.51178037 and10632020)the German Research Foundation(DFG)(Nos.ZH 15/11-1 and ZH 15/16-1)+1 种基金the International Bureau of the German Federal Ministry of Education and Research(BMBF)(No.CHN11/045)the National Basic Research Program of China(No.2010CB732104)
文摘A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method.