期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Axial Vibration Analysis of the Mud Recovery Line on Deepwater Riserless Mud Recovery Drilling System
1
作者 王国栋 陈国明 +1 位作者 许亮斌 殷志明 《China Ocean Engineering》 SCIE EI CSCD 2014年第3期381-390,共10页
The series connection of multistage pumping module is the common concept of deepwater riserless mud recovery drilling system. In this system, the influence of the mass of pumping module on the vibration of mud recover... The series connection of multistage pumping module is the common concept of deepwater riserless mud recovery drilling system. In this system, the influence of the mass of pumping module on the vibration of mud recovery line cannot be ignored, and the lumped mass method has been utilized to discretize the mud recovery line. Based on the analysis of different boundary conditions, the paper establishes the axial forced vibration model of the mud recovery line considering the seawater damping, and the vibration model analysis provides the universal solution to the vibration model. An example of the two-stage pumping system has been used to analyze the dynamic response of mud recovery line under different excited frequencies. This paper has the important directive significance for the application of riserless mud recovery drilling technology in deepwater surface drilling. 展开更多
关键词 riserless mud recovery drilling lumped mass method mud recovery line axial vibration analysis
下载PDF
Dynamic Response of Two-Degree-of-Freedom Riserless Drill String for Vortex-Induced Vibration Suppression and Enhancement
2
作者 WANG Yu LOU Min +1 位作者 WANG Yangyang ZHANG Chen 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第3期612-626,共15页
The mechanical behavior,dynamic evolution,and flow-field distribution of a two-degree-of-freedom riserless drill string were simulated numerically by using FLUENT fluid simulation software with the user-defined functi... The mechanical behavior,dynamic evolution,and flow-field distribution of a two-degree-of-freedom riserless drill string were simulated numerically by using FLUENT fluid simulation software with the user-defined function embedded.The rotation angular velocities before and after the critical rotation angular velocity were used as independent variables,and the reduced velocity range was 3-14.Fluid-structure coupling was realized based on the dynamic overset grid and the SST k-ωturbulence model.Results reveal that the dynamic response of the riserless drill string was considerably affected by rotation and flow velocity,which are coupled with each other.The cross-flow average dimensionless displacement increased with the rotation angular velocity,and rotation considerably enhanced the in-line maximum average dimensionless displacement.However,the cross-flow amplitude caused by vortex-induced vibration was suppressed when the rotation angular velocity reached a certain value.The in-line and cross-flow frequencies were the same,thereby causing the trajectory to deviate from the standard'figure-eight'shape and become a closed circle shape.The vortex did not fall behind the cylinder at low reduced velocity with high-rotation angular velocity,and the structure of the near-wake vortex remained U-shaped.The wake of the cylinder was deflected along the cross-flow direction,thereby leading to vibration asymmetry and resulting in increased vibration instability and disordered vibration trajectories,especially at high-rotation angular velocities. 展开更多
关键词 riserless drill string TWO-DEGREE-OF-FREEDOM vortex-induced vibration ROTATION dynamic response
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部