Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model ba...Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.展开更多
Due to the fact that there is no protected signal phase for right turns at most signalized intersections, the conflict between pedestrians and right-turning vehicles is one of the most common conflict types for pedest...Due to the fact that there is no protected signal phase for right turns at most signalized intersections, the conflict between pedestrians and right-turning vehicles is one of the most common conflict types for pedestrians. A pedestrian safety analysis of the common right-turn mode at four-phase signalized intersections is presented. Relative risk is used as a measure of the effect of behaviors. The analysis mainly includes five pedestrian factors that affect the conflict process between pedestrians and right-turning vehicles. Pedestrians tend to have a higher risk of being involved in conflicts in the following six situations: crossing with others, running over the crossing, entering the intersection, being near the exit lane, crossing in the middle or at the end of a green light when the right-turn lane is shared, crossing at the beginning of a green light or red period when the right-turn lane is exclusive. It is easier for pedestrians to get priority when crossing the street in the following situations: running over a crossing, entering the intersection, being near the entrance lane, and not using the crosswalk. However, pedestrians are more inclined to yield to right-turning vehicles when pedestrians are crossing in the middle of the green light time. Some measures to alleviate the conflict are put forward according to the conclusion. Video observations also indicate that a clear pedestrian waiting area must be marked for both pedestrian safety and right-turning vehicle efficiency at major flat intersections, particularly when the arms cover the lateral dividing strips.展开更多
基金Projects(51475254,51625503)supported by the National Natural Science Foundation of ChinaProject(MCM20150302)supported by the Joint Project of Tsinghua and China Mobile,ChinaProject supported by the joint Project of Tsinghua and Daimler Greater China Ltd.,Beijing,China
文摘Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.
基金The National Natural Science Foundation of China(No.51278220)
文摘Due to the fact that there is no protected signal phase for right turns at most signalized intersections, the conflict between pedestrians and right-turning vehicles is one of the most common conflict types for pedestrians. A pedestrian safety analysis of the common right-turn mode at four-phase signalized intersections is presented. Relative risk is used as a measure of the effect of behaviors. The analysis mainly includes five pedestrian factors that affect the conflict process between pedestrians and right-turning vehicles. Pedestrians tend to have a higher risk of being involved in conflicts in the following six situations: crossing with others, running over the crossing, entering the intersection, being near the exit lane, crossing in the middle or at the end of a green light when the right-turn lane is shared, crossing at the beginning of a green light or red period when the right-turn lane is exclusive. It is easier for pedestrians to get priority when crossing the street in the following situations: running over a crossing, entering the intersection, being near the entrance lane, and not using the crosswalk. However, pedestrians are more inclined to yield to right-turning vehicles when pedestrians are crossing in the middle of the green light time. Some measures to alleviate the conflict are put forward according to the conclusion. Video observations also indicate that a clear pedestrian waiting area must be marked for both pedestrian safety and right-turning vehicle efficiency at major flat intersections, particularly when the arms cover the lateral dividing strips.