Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents...Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents based on keywords.An efficient classification algorithm for retrieving documents based on keyword words is required.The traditional algorithm performs less because it never considers words’polysemy and the relationship between bag-of-words in keywords.To solve the above problem,Semantic Featured Convolution Neural Networks(SF-CNN)is proposed to obtain the key relationships among the searching keywords and build a structure for matching the words for retrieving correct text documents.The proposed SF-CNN is based on deep semantic-based bag-of-word representation for document retrieval.Traditional deep learning methods such as Convolutional Neural Network and Recurrent Neural Network never use semantic representation for bag-of-words.The experiment is performed with different document datasets for evaluating the performance of the proposed SF-CNN method.SF-CNN classifies the documents with an accuracy of 94%than the traditional algorithms.展开更多
The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disast...The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).展开更多
Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniq...Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniques have been frequently implemented in this area,the existing studies disregard to the nat-ural order between the target attribute values of the historical sensor data.Thus,these methods cause losing the inherent order of the data that positively affects the prediction performances.To deal with this problem,a novel approach,named Ordinal Multi-dimensional Classification(OMDC),is proposed for estimating the conditions of a hydraulic system's four components by taking into the natural order of class values.To demonstrate the prediction ability of the proposed approach,eleven different multi-dimensional classification algorithms(traditional Binary Relevance(BR),Classifier Chain(CC),Bayesian Classifier Chain(BCC),Monte Carlo Classifier Chain(MCC),Probabilistic Classifier Chain(PCC),Clas-sifier Dependency Network(CDN),Classifier Trellis(CT),Classifier Dependency Trellis(CDT),Label Powerset(LP),Pruned Sets(PS),and Random k-Labelsets(RAKEL))were implemented using the Ordinal Class Classifier(OCC)algorithm.Besides,seven different classification algorithms(Multilayer Perceptron(MLP),Support Vector Machine(SVM),k-Nearest Neighbour(kNN),Decision Tree(C4.5),Bagging,Random Forest(RF),and Adaptive Boosting(AdaBoost))were chosen as base learners for the OCC algorithm.The experimental results present that the proposed OMDC approach using binary relevance multi-dimensional classification methods predicts the conditions of a hydraulic system's multiple components with high accuracy.Also,it is clearly seen from the results that the OMDC models that utilize ensemble-based classification algorithms give more reliable prediction performances with an average Hamming score of 0.853 than the others that use traditional algorithms as base learners.展开更多
Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of expe...Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of experts.A system is proposed to alleviate this challenge that uses transfer learning techni-ques to classify the cephalopods automatically.In the proposed method,only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition.First,the efficiency of the chosen models is determined by evaluating their performance and comparing thefindings.Second,the models arefine-tuned by adding dense layers and tweaking hyperparameters to improve the classification of accuracy.The models also employ a well-tuned Rectified Adam optimizer to increase the accuracy rates.Third,Adam with Gradient Cen-tralisation(RAdamGC)is proposed and used infine-tuned models to reduce the training time.The framework enables an Internet of Things(IoT)or embedded device to perform the classification tasks by embedding a suitable lightweight pre-trained network.Thefine-tuned models,MobileNetV2,InceptionV3,and NASNet Mobile have achieved a classification accuracy of 89.74%,87.12%,and 89.74%,respectively.Thefindings have indicated that thefine-tuned models can classify different kinds of cephalopods.The results have also demonstrated that there is a significant reduction in the training time with RAdamGC.展开更多
The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification M...The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography(EEG)Biomedical Signals,named OSAE-SSCEEG technique.The major intention of the OSAE-SSCEEG technique is tofind the sleep stage disorders using the EEG biomedical signals.The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach.Moreover,the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization(SAE-SR)with softmax(SM)approach.Finally,the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization Algorithm(COA)and it leads to boosted classification efficiency.In order to ensure the enhanced performance of the OSAE-SSCEEG technique,a wide ranging simulation analysis is performed and the obtained results demonstrate the betterment of the OSAE-SSCEEG tech-nique over the recent methods.展开更多
Cybercrime has increased considerably in recent times by creating new methods of stealing,changing,and destroying data in daily lives.Portable Docu-ment Format(PDF)has been traditionally utilized as a popular way of s...Cybercrime has increased considerably in recent times by creating new methods of stealing,changing,and destroying data in daily lives.Portable Docu-ment Format(PDF)has been traditionally utilized as a popular way of spreading malware.The recent advances of machine learning(ML)and deep learning(DL)models are utilized to detect and classify malware.With this motivation,this study focuses on the design of mayfly optimization with a deep belief network for PDF malware detection and classification(MFODBN-MDC)technique.The major intention of the MFODBN-MDC technique is for identifying and classify-ing the presence of malware exist in the PDFs.The proposed MFODBN-MDC method derives a new MFO algorithm for the optimal selection of feature subsets.In addition,Adamax optimizer with the DBN model is used for PDF malware detection and classification.The design of the MFO algorithm to select features and Adamax based hyperparameter tuning for PDF malware detection and classi-fication demonstrates the novelty of the work.For demonstrating the improved outcomes of the MFODBN-MDC model,a wide range of simulations are exe-cuted,and the results are assessed in various aspects.The comparison study high-lighted the enhanced outcomes of the MFODBN-MDC model over the existing techniques with maximum precision,recall,and F1 score of 97.42%,97.33%,and 97.33%,respectively.展开更多
Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approach...Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approaches to address regression,prediction,and classification problems have received consid-erable interest.At the same time,the detection of anomalies or outliers and feature selection(FS)processes becomes important.This study develops an outlier detec-tion with feature selection technique for streaming data classification,named ODFST-SDC technique.Initially,streaming data is pre-processed in two ways namely categorical encoding and null value removal.In addition,Local Correla-tion Integral(LOCI)is used which is significant in the detection and removal of outliers.Besides,red deer algorithm(RDA)based FS approach is employed to derive an optimal subset of features.Finally,kernel extreme learning machine(KELM)classifier is used for streaming data classification.The design of LOCI based outlier detection and RDA based FS shows the novelty of the work.In order to assess the classification outcomes of the ODFST-SDC technique,a series of simulations were performed using three benchmark datasets.The experimental results reported the promising outcomes of the ODFST-SDC technique over the recent approaches.展开更多
In recent years,huge volumes of healthcare data are getting generated in various forms.The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker....In recent years,huge volumes of healthcare data are getting generated in various forms.The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker.Due to such massive generation of big data,the utilization of new methods based on Big Data Analytics(BDA),Machine Learning(ML),and Artificial Intelligence(AI)have become essential.In this aspect,the current research work develops a new Big Data Analytics with Cat Swarm Optimization based deep Learning(BDA-CSODL)technique for medical image classification on Apache Spark environment.The aim of the proposed BDA-CSODL technique is to classify the medical images and diagnose the disease accurately.BDA-CSODL technique involves different stages of operations such as preprocessing,segmentation,fea-ture extraction,and classification.In addition,BDA-CSODL technique also fol-lows multi-level thresholding-based image segmentation approach for the detection of infected regions in medical image.Moreover,a deep convolutional neural network-based Inception v3 method is utilized in this study as feature extractor.Stochastic Gradient Descent(SGD)model is used for parameter tuning process.Furthermore,CSO with Long Short-Term Memory(CSO-LSTM)model is employed as a classification model to determine the appropriate class labels to it.Both SGD and CSO design approaches help in improving the overall image classification performance of the proposed BDA-CSODL technique.A wide range of simulations was conducted on benchmark medical image datasets and the com-prehensive comparative results demonstrate the supremacy of the proposed BDA-CSODL technique under different measures.展开更多
The accuracy offingerprint recognition model is extremely important due to its usage in forensic and securityfields.Anyfingerprint recognition system has particular network architecture whereas many other networks achiev...The accuracy offingerprint recognition model is extremely important due to its usage in forensic and securityfields.Anyfingerprint recognition system has particular network architecture whereas many other networks achieve higher accuracy.To solve this problem in a unified model,this paper proposes a model that can automatically specify itself.So,it is called an automatic deep neural net-work(ADNN).Our algorithm can specify the appropriate architecture of the neur-al network used and some significant parameters of this network.These parameters are the number offilters,epochs,and iterations.It guarantees the high-est accuracy by updating itself until achieving 99%accuracy then it stops and out-puts the result.Moreover,this paper proposes an end-to-end methodology for recognizing a person’s identity from the inputfingerprint image based on a resi-dual convolutional neural network.It is a complete system and is fully automated whether in the features extraction stage or the classification stage.Our goal is to automate thisfingerprint recognition system because the more automatic the sys-tem is,the more time and effort it saves.Our model also allows users to react by inputting the initial values of these parameters.Then,the model updates itself until itfinds the optimal values for the parameters and achieves the best accuracy.Another advantage of our algorithm is that it can recognize people from their thumb and otherfingers and its ability to recognize distorted samples.Our algo-rithm achieved 99.75%accuracy on the publicfingerprint dataset(SOCOFing).This is the best accuracy compared with other models.展开更多
The brain tumor is an abnormal and hysterical growth of brain tissues,and the leading cause of death affected patients worldwide.Even in this technol-ogy-based arena,brain tumor images with proper labeling and acquisi...The brain tumor is an abnormal and hysterical growth of brain tissues,and the leading cause of death affected patients worldwide.Even in this technol-ogy-based arena,brain tumor images with proper labeling and acquisition still have a problem with the accurate and reliable generation of realistic images of brain tumors that are completely different from the original ones.The artificially created medical image data would help improve the learning ability of physicians and other computer-aided systems for the generation of augmented data.To over-come the highlighted issue,a Generative Adversarial Network(GAN)deep learn-ing technique in which two neural networks compete to become more accurate in creating artificially realistic data for MRI images.The GAN network contains mainly two parts known as generator and discriminator.Commonly,a generator is the convolutional neural network,and a discriminator is the deconvolutional neural network.In this research,the publicly accessible Contrast-Enhanced Mag-netic Resonance Imaging(CE-MRI)dataset collected from 2005-to 2020 from different hospitals in China consists of four classes has been used.Our proposed method is simple and achieved an accuracy of 96%.We compare our technique results with the existing results,indicating that our proposed technique outper-forms the best results associated with the existing methods.展开更多
A Deep Neural Sentiment Classification Network(DNSCN)is devel-oped in this work to classify the Twitter data unambiguously.It attempts to extract the negative and positive sentiments in the Twitter database.The main go...A Deep Neural Sentiment Classification Network(DNSCN)is devel-oped in this work to classify the Twitter data unambiguously.It attempts to extract the negative and positive sentiments in the Twitter database.The main goal of the system is tofind the sentiment behavior of tweets with minimum ambiguity.A well-defined neural network extracts deep features from the tweets automatically.Before extracting features deeper and deeper,the text in each tweet is represented by Bag-of-Words(BoW)and Word Embeddings(WE)models.The effectiveness of DNSCN architecture is analyzed using Twitter-Sanders-Apple2(TSA2),Twit-ter-Sanders-Apple3(TSA3),and Twitter-DataSet(TDS).TSA2 and TDS consist of positive and negative tweets,whereas TSA3 has neutral tweets also.Thus,the proposed DNSCN acts as a binary classifier for TSA2 and TDS databases and a multiclass classifier for TSA3.The performances of DNSCN architecture are evaluated by F1 score,precision,and recall rates using 5-fold and 10-fold cross-validation.Results show that the DNSCN-WE model provides more accuracy than the DNSCN-BoW model for representing the tweets in the feature encoding.The F1 score of the DNSCN-BW based system on the TSA2 database is 0.98(binary classification)and 0.97(three-class classification)for the TSA3 database.This system provides better a F1 score of 0.99 for the TDS database.展开更多
Object detection and classification are the trending research topics in thefield of computer vision because of their applications like visual surveillance.However,the vision-based objects detection and classification met...Object detection and classification are the trending research topics in thefield of computer vision because of their applications like visual surveillance.However,the vision-based objects detection and classification methods still suffer from detecting smaller objects and dense objects in the complex dynamic envir-onment with high accuracy and precision.The present paper proposes a novel enhanced method to detect and classify objects using Hyperbolic Tangent based You Only Look Once V4 with a Modified Manta-Ray Foraging Optimization-based Convolution Neural Network.Initially,in the pre-processing,the video data was converted into image sequences and Polynomial Adaptive Edge was applied to preserve the Algorithm method for image resizing and noise removal.The noiseless resized image sequences contrast was enhanced using Contrast Limited Adaptive Edge Preserving Algorithm.And,with the contrast-enhanced image sequences,the Hyperbolic Tangent based You Only Look Once V4 was trained for object detection.Additionally,to detect smaller objects with high accuracy,Grasp configuration was observed for every detected object.Finally,the Modified Manta-Ray Foraging Optimization-based Convolution Neural Network method was carried out for the detection and the classification of objects.Comparative experiments were conducted on various benchmark datasets and methods that showed improved accurate detection and classification results.展开更多
Environmental pollution has had substantial impacts on human life,and trash is one of the main sources of such pollution in most countries.Trash classi-fication from a collection of trash images can limit the overloadi...Environmental pollution has had substantial impacts on human life,and trash is one of the main sources of such pollution in most countries.Trash classi-fication from a collection of trash images can limit the overloading of garbage dis-posal systems and efficiently promote recycling activities;thus,development of such a classification system is topical and urgent.This paper proposed an effective trash classification system that relies on a classification module embedded in a hard-ware setup to classify trash in real time.An image dataset isfirst augmented to enhance the images before classifying them as either inorganic or organic trash.The deep learning–based ResNet-50 model,an improved version of the ResNet model,is used to classify trash from the dataset of trash images.The experimental results,which are tested both on the dataset and in real time,show that ResNet-50 had an average accuracy of 96%,higher than that of related models.Moreover,integrating the classification module into a Raspberry Pi computer,which con-trolled the trash bin slide so that garbage fell into the appropriate bin for inorganic or organic waste,created a complete trash classification system.This proves the efficiency and high applicability of the proposed system.展开更多
Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better p...Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better performance.Since big data involves numerous features and necessitates high computational time,feature selection methodologies using metaheuristic optimization algorithms can be adopted to choose optimum set of features and thereby improves the overall classification performance.This study proposes a new sigmoid butterfly optimization method with an optimum gated recurrent unit(SBOA-OGRU)model for big data classification in Apache Spark.The SBOA-OGRU technique involves the design of SBOA based feature selection technique to choose an optimum subset of features.In addition,OGRU based classification model is employed to classify the big data into appropriate classes.Besides,the hyperparameter tuning of the GRU model takes place using Adam optimizer.Furthermore,the Apache Spark platform is applied for processing big data in an effective way.In order to ensure the betterment of the SBOA-OGRU technique,a wide range of experiments were performed and the experimental results highlighted the supremacy of the SBOA-OGRU technique.展开更多
In the medical profession,recent technological advancements play an essential role in the early detection and categorization of many diseases that cause mortality.The technique rising on daily basis for detecting illn...In the medical profession,recent technological advancements play an essential role in the early detection and categorization of many diseases that cause mortality.The technique rising on daily basis for detecting illness in magnetic resonance through pictures is the inspection of humans.Automatic(computerized)illness detection in medical imaging has found you the emergent region in several medical diagnostic applications.Various diseases that cause death need to be identified through such techniques and technologies to overcome the mortality ratio.The brain tumor is one of the most common causes of death.Researchers have already proposed various models for the classification and detection of tumors,each with its strengths and weaknesses,but there is still a need to improve the classification process with improved efficiency.However,in this study,we give an in-depth analysis of six distinct machine learning(ML)algorithms,including Random Forest(RF),Naïve Bayes(NB),Neural Networks(NN),CN2 Rule Induction(CN2),Support Vector Machine(SVM),and Decision Tree(Tree),to address this gap in improving accuracy.On the Kaggle dataset,these strategies are tested using classification accuracy,the area under the Receiver Operating Characteristic(ROC)curve,precision,recall,and F1 Score(F1).The training and testing process is strengthened by using a 10-fold cross-validation technique.The results show that SVM outperforms other algorithms,with 95.3%accuracy.展开更多
Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is importa...Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is important for effective classification outcomes.Additionally,the recent advancements of deep learning(DL)models make it possible in several application areas.In addition,the performance of the DL models is mainly based on the hyperparameter setting which can be resolved by the design of metaheuristics.In this view,this article develops an automated red deer algorithm with deep learning enabled hyperspec-tral image(HSI)classification(RDADL-HIC)technique.The proposed RDADL-HIC technique aims to effectively determine the HSI images.In addition,the RDADL-HIC technique comprises a NASNetLarge model with Adagrad optimi-zer.Moreover,RDA with gated recurrent unit(GRU)approach is used for the identification and classification of HSIs.The design of Adagrad optimizer with RDA helps to optimally tune the hyperparameters of the NASNetLarge and GRU models respectively.The experimental results stated the supremacy of the RDADL-HIC model and the results are inspected interms of different measures.The comparison study of the RDADL-HIC model demonstrated the enhanced per-formance over its recent state of art approaches.展开更多
Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transformi...Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transforming the electro-encephalogram(EEG)signals.The deep learning(DL)models automated extract the features and often showcased improved outcomes over the conventional clas-sification model in the recognition processes.This paper presents an Ensemble Deep Learning with Chimp Optimization Algorithm for EEG Eye State Classifi-cation(EDLCOA-ESC).The proposed EDLCOA-ESC technique involves min-max normalization approach as a pre-processing step.Besides,wavelet packet decomposition(WPD)technique is employed for the extraction of useful features from the EEG signals.In addition,an ensemble of deep sparse autoencoder(DSAE)and kernel ridge regression(KRR)models are employed for EEG Eye State classification.Finally,hyperparameters tuning of the DSAE model takes place using COA and thereby boost the classification results to a maximum extent.An extensive range of simulation analysis on the benchmark dataset is car-ried out and the results reported the promising performance of the EDLCOA-ESC technique over the recent approaches with maximum accuracy of 98.50%.展开更多
Accurate soil prediction is a vital parameter involved to decide appro-priate crop,which is commonly carried out by the farmers.Designing an auto-mated soil prediction tool helps to considerably improve the efficacy of...Accurate soil prediction is a vital parameter involved to decide appro-priate crop,which is commonly carried out by the farmers.Designing an auto-mated soil prediction tool helps to considerably improve the efficacy of the farmers.At the same time,fuzzy logic(FL)approaches can be used for the design of predictive models,particularly,Fuzzy Cognitive Maps(FCMs)have involved the concept of uncertainty representation and cognitive mapping.In other words,the FCM is an integration of the recurrent neural network(RNN)and FL involved in the knowledge engineering phase.In this aspect,this paper introduces effective fuzzy cognitive maps with cat swarm optimization for automated soil classifica-tion(FCMCSO-ASC)technique.The goal of the FCMCSO-ASC technique is to identify and categorize seven different types of soil.To accomplish this,the FCMCSO-ASC technique incorporates local diagonal extrema pattern(LDEP)as a feature extractor for producing a collection of feature vectors.In addition,the FCMCSO model is applied for soil classification and the weight values of the FCM model are optimally adjusted by the use of CSO algorithm.For exam-ining the enhanced soil classification outcomes of the FCMCSO-ASC technique,a series of simulations were carried out on benchmark dataset and the experimen-tal outcomes reported the enhanced performance of the FCMCSO-ASC technique over the recent techniques with maximum accuracy of 96.84%.展开更多
The objective of this research is to examine the use of feature selection and classification methods for distinguishing different types of brain tumors.The brain tumor is characterized by an anomalous proliferation of ...The objective of this research is to examine the use of feature selection and classification methods for distinguishing different types of brain tumors.The brain tumor is characterized by an anomalous proliferation of brain cells that can either be benign or malignant.Most tumors are misdiagnosed due to the variabil-ity and complexity of lesions,which reduces the survival rate in patients.Diagno-sis of brain tumors via computer vision algorithms is a challenging task.Segmentation and classification of brain tumors are currently one of the most essential surgical and pharmaceutical procedures.Traditional brain tumor identi-fication techniques require manual segmentation or handcrafted feature extraction that is error-prone and time-consuming.Hence the proposed research work is mainly focused on medical image processing,which takes Magnetic Resonance Imaging(MRI)images as input and performs preprocessing,segmentation,fea-ture extraction,feature selection,similarity measurement,and classification steps for identifying brain tumors.Initially,the medianfilter is practically applied to the input image to reduce the noise.The graph-cut segmentation technique is used to segment the tumor region.The texture feature is extracted from the output of the segmented image.The extracted feature is selected by using the Ant Colony Opti-mization(ACO)algorithm to improve the performance of the classifier.This prob-abilistic approach is used to solve computing issues.The Euclidean distance is used to calculate the degree of similarity for each extracted feature.The selected feature value is given to the Relevance Vector Machine(RVM)which is a multi-class classification technique.Finally,the tumor is classified as abnormal or nor-mal.The experimental result reveals that the proposed RVM technique gives a better accuracy range of 98.87%when compared to the traditional Support Vector Machine(SVM)technique.展开更多
Medical image classification becomes a vital part of the design of computer aided diagnosis(CAD)models.The conventional CAD models are majorly dependent upon the shapes,colors,and/or textures that are problem oriented...Medical image classification becomes a vital part of the design of computer aided diagnosis(CAD)models.The conventional CAD models are majorly dependent upon the shapes,colors,and/or textures that are problem oriented and exhibited complementary in medical images.The recently developed deep learning(DL)approaches pave an efficient method of constructing dedicated models for classification problems.But the maximum resolution of medical images and small datasets,DL models are facing the issues of increased computation cost.In this aspect,this paper presents a deep convolutional neural network with hierarchical spiking neural network(DCNN-HSNN)for medical image classification.The proposed DCNN-HSNN technique aims to detect and classify the existence of diseases using medical images.In addition,region growing segmentation technique is involved to determine the infected regions in the medical image.Moreover,NADAM optimizer with DCNN based Capsule Network(CapsNet)approach is used for feature extraction and derived a collection of feature vectors.Furthermore,the shark smell optimization algorithm(SSA)based HSNN approach is utilized for classification process.In order to validate the better performance of the DCNN-HSNN technique,a wide range of simulations take place against HIS2828 and ISIC2017 datasets.The experimental results highlighted the effectiveness of the DCNN-HSNN technique over the recent techniques interms of different measures.Please type your abstract here.展开更多
文摘Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents based on keywords.An efficient classification algorithm for retrieving documents based on keyword words is required.The traditional algorithm performs less because it never considers words’polysemy and the relationship between bag-of-words in keywords.To solve the above problem,Semantic Featured Convolution Neural Networks(SF-CNN)is proposed to obtain the key relationships among the searching keywords and build a structure for matching the words for retrieving correct text documents.The proposed SF-CNN is based on deep semantic-based bag-of-word representation for document retrieval.Traditional deep learning methods such as Convolutional Neural Network and Recurrent Neural Network never use semantic representation for bag-of-words.The experiment is performed with different document datasets for evaluating the performance of the proposed SF-CNN method.SF-CNN classifies the documents with an accuracy of 94%than the traditional algorithms.
基金funded by Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,under grant No.(PNURSP2022R161).
文摘The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).
文摘Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniques have been frequently implemented in this area,the existing studies disregard to the nat-ural order between the target attribute values of the historical sensor data.Thus,these methods cause losing the inherent order of the data that positively affects the prediction performances.To deal with this problem,a novel approach,named Ordinal Multi-dimensional Classification(OMDC),is proposed for estimating the conditions of a hydraulic system's four components by taking into the natural order of class values.To demonstrate the prediction ability of the proposed approach,eleven different multi-dimensional classification algorithms(traditional Binary Relevance(BR),Classifier Chain(CC),Bayesian Classifier Chain(BCC),Monte Carlo Classifier Chain(MCC),Probabilistic Classifier Chain(PCC),Clas-sifier Dependency Network(CDN),Classifier Trellis(CT),Classifier Dependency Trellis(CDT),Label Powerset(LP),Pruned Sets(PS),and Random k-Labelsets(RAKEL))were implemented using the Ordinal Class Classifier(OCC)algorithm.Besides,seven different classification algorithms(Multilayer Perceptron(MLP),Support Vector Machine(SVM),k-Nearest Neighbour(kNN),Decision Tree(C4.5),Bagging,Random Forest(RF),and Adaptive Boosting(AdaBoost))were chosen as base learners for the OCC algorithm.The experimental results present that the proposed OMDC approach using binary relevance multi-dimensional classification methods predicts the conditions of a hydraulic system's multiple components with high accuracy.Also,it is clearly seen from the results that the OMDC models that utilize ensemble-based classification algorithms give more reliable prediction performances with an average Hamming score of 0.853 than the others that use traditional algorithms as base learners.
文摘Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of experts.A system is proposed to alleviate this challenge that uses transfer learning techni-ques to classify the cephalopods automatically.In the proposed method,only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition.First,the efficiency of the chosen models is determined by evaluating their performance and comparing thefindings.Second,the models arefine-tuned by adding dense layers and tweaking hyperparameters to improve the classification of accuracy.The models also employ a well-tuned Rectified Adam optimizer to increase the accuracy rates.Third,Adam with Gradient Cen-tralisation(RAdamGC)is proposed and used infine-tuned models to reduce the training time.The framework enables an Internet of Things(IoT)or embedded device to perform the classification tasks by embedding a suitable lightweight pre-trained network.Thefine-tuned models,MobileNetV2,InceptionV3,and NASNet Mobile have achieved a classification accuracy of 89.74%,87.12%,and 89.74%,respectively.Thefindings have indicated that thefine-tuned models can classify different kinds of cephalopods.The results have also demonstrated that there is a significant reduction in the training time with RAdamGC.
基金Taif University Researchers Supporting Project Number(TURSP-2020/161)Taif University,Taif,Saudi Arabia.
文摘The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography(EEG)Biomedical Signals,named OSAE-SSCEEG technique.The major intention of the OSAE-SSCEEG technique is tofind the sleep stage disorders using the EEG biomedical signals.The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach.Moreover,the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization(SAE-SR)with softmax(SM)approach.Finally,the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization Algorithm(COA)and it leads to boosted classification efficiency.In order to ensure the enhanced performance of the OSAE-SSCEEG technique,a wide ranging simulation analysis is performed and the obtained results demonstrate the betterment of the OSAE-SSCEEG tech-nique over the recent methods.
文摘Cybercrime has increased considerably in recent times by creating new methods of stealing,changing,and destroying data in daily lives.Portable Docu-ment Format(PDF)has been traditionally utilized as a popular way of spreading malware.The recent advances of machine learning(ML)and deep learning(DL)models are utilized to detect and classify malware.With this motivation,this study focuses on the design of mayfly optimization with a deep belief network for PDF malware detection and classification(MFODBN-MDC)technique.The major intention of the MFODBN-MDC technique is for identifying and classify-ing the presence of malware exist in the PDFs.The proposed MFODBN-MDC method derives a new MFO algorithm for the optimal selection of feature subsets.In addition,Adamax optimizer with the DBN model is used for PDF malware detection and classification.The design of the MFO algorithm to select features and Adamax based hyperparameter tuning for PDF malware detection and classi-fication demonstrates the novelty of the work.For demonstrating the improved outcomes of the MFODBN-MDC model,a wide range of simulations are exe-cuted,and the results are assessed in various aspects.The comparison study high-lighted the enhanced outcomes of the MFODBN-MDC model over the existing techniques with maximum precision,recall,and F1 score of 97.42%,97.33%,and 97.33%,respectively.
文摘Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approaches to address regression,prediction,and classification problems have received consid-erable interest.At the same time,the detection of anomalies or outliers and feature selection(FS)processes becomes important.This study develops an outlier detec-tion with feature selection technique for streaming data classification,named ODFST-SDC technique.Initially,streaming data is pre-processed in two ways namely categorical encoding and null value removal.In addition,Local Correla-tion Integral(LOCI)is used which is significant in the detection and removal of outliers.Besides,red deer algorithm(RDA)based FS approach is employed to derive an optimal subset of features.Finally,kernel extreme learning machine(KELM)classifier is used for streaming data classification.The design of LOCI based outlier detection and RDA based FS shows the novelty of the work.In order to assess the classification outcomes of the ODFST-SDC technique,a series of simulations were performed using three benchmark datasets.The experimental results reported the promising outcomes of the ODFST-SDC technique over the recent approaches.
基金The author extends his appreciation to the Deanship of Scientific Research at Majmaah University for funding this study under Project Number(R-2022-61).
文摘In recent years,huge volumes of healthcare data are getting generated in various forms.The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker.Due to such massive generation of big data,the utilization of new methods based on Big Data Analytics(BDA),Machine Learning(ML),and Artificial Intelligence(AI)have become essential.In this aspect,the current research work develops a new Big Data Analytics with Cat Swarm Optimization based deep Learning(BDA-CSODL)technique for medical image classification on Apache Spark environment.The aim of the proposed BDA-CSODL technique is to classify the medical images and diagnose the disease accurately.BDA-CSODL technique involves different stages of operations such as preprocessing,segmentation,fea-ture extraction,and classification.In addition,BDA-CSODL technique also fol-lows multi-level thresholding-based image segmentation approach for the detection of infected regions in medical image.Moreover,a deep convolutional neural network-based Inception v3 method is utilized in this study as feature extractor.Stochastic Gradient Descent(SGD)model is used for parameter tuning process.Furthermore,CSO with Long Short-Term Memory(CSO-LSTM)model is employed as a classification model to determine the appropriate class labels to it.Both SGD and CSO design approaches help in improving the overall image classification performance of the proposed BDA-CSODL technique.A wide range of simulations was conducted on benchmark medical image datasets and the com-prehensive comparative results demonstrate the supremacy of the proposed BDA-CSODL technique under different measures.
文摘The accuracy offingerprint recognition model is extremely important due to its usage in forensic and securityfields.Anyfingerprint recognition system has particular network architecture whereas many other networks achieve higher accuracy.To solve this problem in a unified model,this paper proposes a model that can automatically specify itself.So,it is called an automatic deep neural net-work(ADNN).Our algorithm can specify the appropriate architecture of the neur-al network used and some significant parameters of this network.These parameters are the number offilters,epochs,and iterations.It guarantees the high-est accuracy by updating itself until achieving 99%accuracy then it stops and out-puts the result.Moreover,this paper proposes an end-to-end methodology for recognizing a person’s identity from the inputfingerprint image based on a resi-dual convolutional neural network.It is a complete system and is fully automated whether in the features extraction stage or the classification stage.Our goal is to automate thisfingerprint recognition system because the more automatic the sys-tem is,the more time and effort it saves.Our model also allows users to react by inputting the initial values of these parameters.Then,the model updates itself until itfinds the optimal values for the parameters and achieves the best accuracy.Another advantage of our algorithm is that it can recognize people from their thumb and otherfingers and its ability to recognize distorted samples.Our algo-rithm achieved 99.75%accuracy on the publicfingerprint dataset(SOCOFing).This is the best accuracy compared with other models.
基金Authors would like to acknowledge the support of the Deputy for Research and Innovation-Ministry of Education,Kingdom of Saudi Arabia for funding this research through a project(NU/IFC/ENT/01/014)under the institutional funding committee at Najran University,Kingdom of Saudi Arabia.
文摘The brain tumor is an abnormal and hysterical growth of brain tissues,and the leading cause of death affected patients worldwide.Even in this technol-ogy-based arena,brain tumor images with proper labeling and acquisition still have a problem with the accurate and reliable generation of realistic images of brain tumors that are completely different from the original ones.The artificially created medical image data would help improve the learning ability of physicians and other computer-aided systems for the generation of augmented data.To over-come the highlighted issue,a Generative Adversarial Network(GAN)deep learn-ing technique in which two neural networks compete to become more accurate in creating artificially realistic data for MRI images.The GAN network contains mainly two parts known as generator and discriminator.Commonly,a generator is the convolutional neural network,and a discriminator is the deconvolutional neural network.In this research,the publicly accessible Contrast-Enhanced Mag-netic Resonance Imaging(CE-MRI)dataset collected from 2005-to 2020 from different hospitals in China consists of four classes has been used.Our proposed method is simple and achieved an accuracy of 96%.We compare our technique results with the existing results,indicating that our proposed technique outper-forms the best results associated with the existing methods.
文摘A Deep Neural Sentiment Classification Network(DNSCN)is devel-oped in this work to classify the Twitter data unambiguously.It attempts to extract the negative and positive sentiments in the Twitter database.The main goal of the system is tofind the sentiment behavior of tweets with minimum ambiguity.A well-defined neural network extracts deep features from the tweets automatically.Before extracting features deeper and deeper,the text in each tweet is represented by Bag-of-Words(BoW)and Word Embeddings(WE)models.The effectiveness of DNSCN architecture is analyzed using Twitter-Sanders-Apple2(TSA2),Twit-ter-Sanders-Apple3(TSA3),and Twitter-DataSet(TDS).TSA2 and TDS consist of positive and negative tweets,whereas TSA3 has neutral tweets also.Thus,the proposed DNSCN acts as a binary classifier for TSA2 and TDS databases and a multiclass classifier for TSA3.The performances of DNSCN architecture are evaluated by F1 score,precision,and recall rates using 5-fold and 10-fold cross-validation.Results show that the DNSCN-WE model provides more accuracy than the DNSCN-BoW model for representing the tweets in the feature encoding.The F1 score of the DNSCN-BW based system on the TSA2 database is 0.98(binary classification)and 0.97(three-class classification)for the TSA3 database.This system provides better a F1 score of 0.99 for the TDS database.
文摘Object detection and classification are the trending research topics in thefield of computer vision because of their applications like visual surveillance.However,the vision-based objects detection and classification methods still suffer from detecting smaller objects and dense objects in the complex dynamic envir-onment with high accuracy and precision.The present paper proposes a novel enhanced method to detect and classify objects using Hyperbolic Tangent based You Only Look Once V4 with a Modified Manta-Ray Foraging Optimization-based Convolution Neural Network.Initially,in the pre-processing,the video data was converted into image sequences and Polynomial Adaptive Edge was applied to preserve the Algorithm method for image resizing and noise removal.The noiseless resized image sequences contrast was enhanced using Contrast Limited Adaptive Edge Preserving Algorithm.And,with the contrast-enhanced image sequences,the Hyperbolic Tangent based You Only Look Once V4 was trained for object detection.Additionally,to detect smaller objects with high accuracy,Grasp configuration was observed for every detected object.Finally,the Modified Manta-Ray Foraging Optimization-based Convolution Neural Network method was carried out for the detection and the classification of objects.Comparative experiments were conducted on various benchmark datasets and methods that showed improved accurate detection and classification results.
文摘Environmental pollution has had substantial impacts on human life,and trash is one of the main sources of such pollution in most countries.Trash classi-fication from a collection of trash images can limit the overloading of garbage dis-posal systems and efficiently promote recycling activities;thus,development of such a classification system is topical and urgent.This paper proposed an effective trash classification system that relies on a classification module embedded in a hard-ware setup to classify trash in real time.An image dataset isfirst augmented to enhance the images before classifying them as either inorganic or organic trash.The deep learning–based ResNet-50 model,an improved version of the ResNet model,is used to classify trash from the dataset of trash images.The experimental results,which are tested both on the dataset and in real time,show that ResNet-50 had an average accuracy of 96%,higher than that of related models.Moreover,integrating the classification module into a Raspberry Pi computer,which con-trolled the trash bin slide so that garbage fell into the appropriate bin for inorganic or organic waste,created a complete trash classification system.This proves the efficiency and high applicability of the proposed system.
文摘Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better performance.Since big data involves numerous features and necessitates high computational time,feature selection methodologies using metaheuristic optimization algorithms can be adopted to choose optimum set of features and thereby improves the overall classification performance.This study proposes a new sigmoid butterfly optimization method with an optimum gated recurrent unit(SBOA-OGRU)model for big data classification in Apache Spark.The SBOA-OGRU technique involves the design of SBOA based feature selection technique to choose an optimum subset of features.In addition,OGRU based classification model is employed to classify the big data into appropriate classes.Besides,the hyperparameter tuning of the GRU model takes place using Adam optimizer.Furthermore,the Apache Spark platform is applied for processing big data in an effective way.In order to ensure the betterment of the SBOA-OGRU technique,a wide range of experiments were performed and the experimental results highlighted the supremacy of the SBOA-OGRU technique.
基金support of the Deputy for Research and Innovation-Ministry of Education,Kingdom of Saudi Arabia for this research through a grant(NU/IFC/ENT/01/014)under the institutional Funding Committee at Najran University,Kingdom of Saudi Arabia.
文摘In the medical profession,recent technological advancements play an essential role in the early detection and categorization of many diseases that cause mortality.The technique rising on daily basis for detecting illness in magnetic resonance through pictures is the inspection of humans.Automatic(computerized)illness detection in medical imaging has found you the emergent region in several medical diagnostic applications.Various diseases that cause death need to be identified through such techniques and technologies to overcome the mortality ratio.The brain tumor is one of the most common causes of death.Researchers have already proposed various models for the classification and detection of tumors,each with its strengths and weaknesses,but there is still a need to improve the classification process with improved efficiency.However,in this study,we give an in-depth analysis of six distinct machine learning(ML)algorithms,including Random Forest(RF),Naïve Bayes(NB),Neural Networks(NN),CN2 Rule Induction(CN2),Support Vector Machine(SVM),and Decision Tree(Tree),to address this gap in improving accuracy.On the Kaggle dataset,these strategies are tested using classification accuracy,the area under the Receiver Operating Characteristic(ROC)curve,precision,recall,and F1 Score(F1).The training and testing process is strengthened by using a 10-fold cross-validation technique.The results show that SVM outperforms other algorithms,with 95.3%accuracy.
文摘Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is important for effective classification outcomes.Additionally,the recent advancements of deep learning(DL)models make it possible in several application areas.In addition,the performance of the DL models is mainly based on the hyperparameter setting which can be resolved by the design of metaheuristics.In this view,this article develops an automated red deer algorithm with deep learning enabled hyperspec-tral image(HSI)classification(RDADL-HIC)technique.The proposed RDADL-HIC technique aims to effectively determine the HSI images.In addition,the RDADL-HIC technique comprises a NASNetLarge model with Adagrad optimi-zer.Moreover,RDA with gated recurrent unit(GRU)approach is used for the identification and classification of HSIs.The design of Adagrad optimizer with RDA helps to optimally tune the hyperparameters of the NASNetLarge and GRU models respectively.The experimental results stated the supremacy of the RDADL-HIC model and the results are inspected interms of different measures.The comparison study of the RDADL-HIC model demonstrated the enhanced per-formance over its recent state of art approaches.
基金supported by the Researchers Supporting Program(TUMA-Project-2021–27)Almaarefa University,Riyadh,Saudi ArabiaTaif University Researchers Supporting Project Number(TURSP-2020/161),Taif University,Taif,Saudi Arabia.
文摘Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transforming the electro-encephalogram(EEG)signals.The deep learning(DL)models automated extract the features and often showcased improved outcomes over the conventional clas-sification model in the recognition processes.This paper presents an Ensemble Deep Learning with Chimp Optimization Algorithm for EEG Eye State Classifi-cation(EDLCOA-ESC).The proposed EDLCOA-ESC technique involves min-max normalization approach as a pre-processing step.Besides,wavelet packet decomposition(WPD)technique is employed for the extraction of useful features from the EEG signals.In addition,an ensemble of deep sparse autoencoder(DSAE)and kernel ridge regression(KRR)models are employed for EEG Eye State classification.Finally,hyperparameters tuning of the DSAE model takes place using COA and thereby boost the classification results to a maximum extent.An extensive range of simulation analysis on the benchmark dataset is car-ried out and the results reported the promising performance of the EDLCOA-ESC technique over the recent approaches with maximum accuracy of 98.50%.
基金supported by the Researchers Supporting Program(TUMA-Project-2021-27)Almaarefa University,Riyadh,Saudi Arabia.Taif University Researchers Supporting Project Number(TURSP-2020/161)Taif University,Taif,Saudi Arabia.
文摘Accurate soil prediction is a vital parameter involved to decide appro-priate crop,which is commonly carried out by the farmers.Designing an auto-mated soil prediction tool helps to considerably improve the efficacy of the farmers.At the same time,fuzzy logic(FL)approaches can be used for the design of predictive models,particularly,Fuzzy Cognitive Maps(FCMs)have involved the concept of uncertainty representation and cognitive mapping.In other words,the FCM is an integration of the recurrent neural network(RNN)and FL involved in the knowledge engineering phase.In this aspect,this paper introduces effective fuzzy cognitive maps with cat swarm optimization for automated soil classifica-tion(FCMCSO-ASC)technique.The goal of the FCMCSO-ASC technique is to identify and categorize seven different types of soil.To accomplish this,the FCMCSO-ASC technique incorporates local diagonal extrema pattern(LDEP)as a feature extractor for producing a collection of feature vectors.In addition,the FCMCSO model is applied for soil classification and the weight values of the FCM model are optimally adjusted by the use of CSO algorithm.For exam-ining the enhanced soil classification outcomes of the FCMCSO-ASC technique,a series of simulations were carried out on benchmark dataset and the experimen-tal outcomes reported the enhanced performance of the FCMCSO-ASC technique over the recent techniques with maximum accuracy of 96.84%.
文摘The objective of this research is to examine the use of feature selection and classification methods for distinguishing different types of brain tumors.The brain tumor is characterized by an anomalous proliferation of brain cells that can either be benign or malignant.Most tumors are misdiagnosed due to the variabil-ity and complexity of lesions,which reduces the survival rate in patients.Diagno-sis of brain tumors via computer vision algorithms is a challenging task.Segmentation and classification of brain tumors are currently one of the most essential surgical and pharmaceutical procedures.Traditional brain tumor identi-fication techniques require manual segmentation or handcrafted feature extraction that is error-prone and time-consuming.Hence the proposed research work is mainly focused on medical image processing,which takes Magnetic Resonance Imaging(MRI)images as input and performs preprocessing,segmentation,fea-ture extraction,feature selection,similarity measurement,and classification steps for identifying brain tumors.Initially,the medianfilter is practically applied to the input image to reduce the noise.The graph-cut segmentation technique is used to segment the tumor region.The texture feature is extracted from the output of the segmented image.The extracted feature is selected by using the Ant Colony Opti-mization(ACO)algorithm to improve the performance of the classifier.This prob-abilistic approach is used to solve computing issues.The Euclidean distance is used to calculate the degree of similarity for each extracted feature.The selected feature value is given to the Relevance Vector Machine(RVM)which is a multi-class classification technique.Finally,the tumor is classified as abnormal or nor-mal.The experimental result reveals that the proposed RVM technique gives a better accuracy range of 98.87%when compared to the traditional Support Vector Machine(SVM)technique.
文摘Medical image classification becomes a vital part of the design of computer aided diagnosis(CAD)models.The conventional CAD models are majorly dependent upon the shapes,colors,and/or textures that are problem oriented and exhibited complementary in medical images.The recently developed deep learning(DL)approaches pave an efficient method of constructing dedicated models for classification problems.But the maximum resolution of medical images and small datasets,DL models are facing the issues of increased computation cost.In this aspect,this paper presents a deep convolutional neural network with hierarchical spiking neural network(DCNN-HSNN)for medical image classification.The proposed DCNN-HSNN technique aims to detect and classify the existence of diseases using medical images.In addition,region growing segmentation technique is involved to determine the infected regions in the medical image.Moreover,NADAM optimizer with DCNN based Capsule Network(CapsNet)approach is used for feature extraction and derived a collection of feature vectors.Furthermore,the shark smell optimization algorithm(SSA)based HSNN approach is utilized for classification process.In order to validate the better performance of the DCNN-HSNN technique,a wide range of simulations take place against HIS2828 and ISIC2017 datasets.The experimental results highlighted the effectiveness of the DCNN-HSNN technique over the recent techniques interms of different measures.Please type your abstract here.