I consider a system whose deterioration follows a discrete-time and discrete-state Markov chain with an absorbing state. When the system is put into practice, I may select operation (wait), imperfect repair, or replac...I consider a system whose deterioration follows a discrete-time and discrete-state Markov chain with an absorbing state. When the system is put into practice, I may select operation (wait), imperfect repair, or replacement at each discrete-time point. The true state of the system is not known when it is operated. Instead, the system is monitored after operation and some incomplete information concerned with the deterioration is obtained for decision making. Since there are multiple imperfect repairs, I can select one option from them when the imperfect repair is preferable to operation and replacement. To express this situation, I propose a POMDP model and theoretically investigate the structure of an optimal maintenance policy minimizing a total expected discounted cost for an unbounded horizon. Then two stochastic orders are used for the analysis of our problem.展开更多
A engineering system is usually repairable, and failure process of a repairable by a failure point process. The power law model is a commonly used approach to model syst the em is often described failure point process...A engineering system is usually repairable, and failure process of a repairable by a failure point process. The power law model is a commonly used approach to model syst the em is often described failure point process. This paper introduces the concept and model for the failure process of repairable system. The method of parameter estimation is developed, and failure observations are fitted into a power-law model by using the least square method. Two applications of the pressent model are discussed according to the practical failure data of the central cooling system of a nuclear power plant. One application is determining the optimal overhaul time, and the other is evaluating the quality of maintenance. This paper provides references for the overhaul decision making and maintenance quality evaluation in reality.展开更多
Various structures such as marine structures age over time. In order to always maintain safety conditions, maintenance processes including inspection and repair should be implemented on them. Corrosion and fatigue cra...Various structures such as marine structures age over time. In order to always maintain safety conditions, maintenance processes including inspection and repair should be implemented on them. Corrosion and fatigue cracks are two main factors that reduce the ultimate strength of the ship's hull girder over time and thus increase the probability and risk of failure. At the time of inspection,the structural conditions must be checked so that, if necessary, the required repairs can be done on it. The main objective of this paper is to provide optimized maintenance plans of the ship structure based on probabilistic concepts with regard to corrosion and fatigue cracks. Maintenance activities increase the operational costs of ships; therefore, it is advisable to inspect and repair in the optimal times. Optimal maintenance planning of the ship structure can be conducted by formulating and solving a multi-objective optimization problem. The use of risk as a structural performance indicator has become more common in recent years. The objective functions of the optimization problem include minimizing the structure's lifecycle maintenance costs, including inspection and repair costs, and also minimizing the maximum risk of structural failure during the ship's life. In the following,to achieve better responses, reliability index has been added to the problem as the third objective function. The multi-objective optimization problem is solved using genetic algorithms. The proposed risk-based approach is applied to the hull structure of a tanker ship.展开更多
This paper proposes a framework for evaluating the efficacy and suitability of maintenance programs with a focus on quantitative risk assessment in the domain of aircraft maintenance task transfer. The analysis is anc...This paper proposes a framework for evaluating the efficacy and suitability of maintenance programs with a focus on quantitative risk assessment in the domain of aircraft maintenance task transfer. The analysis is anchored in the principles of Maintenance Steering Group-3 (MSG-3) logic decision paradigms. The paper advances a holistic risk assessment index architecture tailored for the task transfer of maintenance programs. Utilizing the analytic network process (ANP), the study quantifies the weight interrelationships among diverse variables, incorporating expert-elicited subjective weighting. A multielement connection number-based evaluative model is employed to characterize decision-specific data, thereby facilitating the quantification of task transfer-associated risk through the appraisal of set-pair potentials. Moreover, the paper conducts a temporal risk trend analysis founded on partial connection numbers of varying orders. This analytical construct serves to streamline the process of risk assessment pertinent to maintenance program task transfer. The empirical component of this research, exemplified through a case study of the Boeing 737NG aircraft maintenance program, corroborates the methodological robustness and pragmatic applicability of the proposed framework in the quantification and analysis of mission transfer risk.展开更多
In this paper, the authors will study the estimation of maintenance efficiency in Arithmetic Reduction of Intensity (ARI) and Arithmetic Reduction of Age (ARA) models with a memory m. These models have been propos...In this paper, the authors will study the estimation of maintenance efficiency in Arithmetic Reduction of Intensity (ARI) and Arithmetic Reduction of Age (ARA) models with a memory m. These models have been proposed by Doyen (2005), the failure process is simply Non Homogeneous Poisson Process (NHPP). Our models are defined by reformulation of ARI and ARA ones using bathtub failure intensity. This form is presented like a superposition of two NHPP and Homogeneous Poisson Process (HPP). Moreover, the particularity of this model allows taking account of system state improvement in time course. The maintenance effect is characterized by the change induced on the failure intensity before and after failure during degradation period. To simplify study, the asymptotic properties of failure process are derived. Then, the asymptotic normality of several maintenance efficiency estimators can be proved in the case where the failure process without maintenance is known. Practically, the coverage rate of the asymptotic confidence intervals issued from those estimators is studied.展开更多
文摘I consider a system whose deterioration follows a discrete-time and discrete-state Markov chain with an absorbing state. When the system is put into practice, I may select operation (wait), imperfect repair, or replacement at each discrete-time point. The true state of the system is not known when it is operated. Instead, the system is monitored after operation and some incomplete information concerned with the deterioration is obtained for decision making. Since there are multiple imperfect repairs, I can select one option from them when the imperfect repair is preferable to operation and replacement. To express this situation, I propose a POMDP model and theoretically investigate the structure of an optimal maintenance policy minimizing a total expected discounted cost for an unbounded horizon. Then two stochastic orders are used for the analysis of our problem.
基金supported by the National Natural Science Foundation of China(71771029)
文摘A engineering system is usually repairable, and failure process of a repairable by a failure point process. The power law model is a commonly used approach to model syst the em is often described failure point process. This paper introduces the concept and model for the failure process of repairable system. The method of parameter estimation is developed, and failure observations are fitted into a power-law model by using the least square method. Two applications of the pressent model are discussed according to the practical failure data of the central cooling system of a nuclear power plant. One application is determining the optimal overhaul time, and the other is evaluating the quality of maintenance. This paper provides references for the overhaul decision making and maintenance quality evaluation in reality.
文摘Various structures such as marine structures age over time. In order to always maintain safety conditions, maintenance processes including inspection and repair should be implemented on them. Corrosion and fatigue cracks are two main factors that reduce the ultimate strength of the ship's hull girder over time and thus increase the probability and risk of failure. At the time of inspection,the structural conditions must be checked so that, if necessary, the required repairs can be done on it. The main objective of this paper is to provide optimized maintenance plans of the ship structure based on probabilistic concepts with regard to corrosion and fatigue cracks. Maintenance activities increase the operational costs of ships; therefore, it is advisable to inspect and repair in the optimal times. Optimal maintenance planning of the ship structure can be conducted by formulating and solving a multi-objective optimization problem. The use of risk as a structural performance indicator has become more common in recent years. The objective functions of the optimization problem include minimizing the structure's lifecycle maintenance costs, including inspection and repair costs, and also minimizing the maximum risk of structural failure during the ship's life. In the following,to achieve better responses, reliability index has been added to the problem as the third objective function. The multi-objective optimization problem is solved using genetic algorithms. The proposed risk-based approach is applied to the hull structure of a tanker ship.
基金supported by the Civil Aviation Administration of China(CAAC)"Safety Capability"Building Fund(Grant No.AADSA2019009)the Fundamental Research Funds of Central Universities(Grant No.3122022060).
文摘This paper proposes a framework for evaluating the efficacy and suitability of maintenance programs with a focus on quantitative risk assessment in the domain of aircraft maintenance task transfer. The analysis is anchored in the principles of Maintenance Steering Group-3 (MSG-3) logic decision paradigms. The paper advances a holistic risk assessment index architecture tailored for the task transfer of maintenance programs. Utilizing the analytic network process (ANP), the study quantifies the weight interrelationships among diverse variables, incorporating expert-elicited subjective weighting. A multielement connection number-based evaluative model is employed to characterize decision-specific data, thereby facilitating the quantification of task transfer-associated risk through the appraisal of set-pair potentials. Moreover, the paper conducts a temporal risk trend analysis founded on partial connection numbers of varying orders. This analytical construct serves to streamline the process of risk assessment pertinent to maintenance program task transfer. The empirical component of this research, exemplified through a case study of the Boeing 737NG aircraft maintenance program, corroborates the methodological robustness and pragmatic applicability of the proposed framework in the quantification and analysis of mission transfer risk.
文摘In this paper, the authors will study the estimation of maintenance efficiency in Arithmetic Reduction of Intensity (ARI) and Arithmetic Reduction of Age (ARA) models with a memory m. These models have been proposed by Doyen (2005), the failure process is simply Non Homogeneous Poisson Process (NHPP). Our models are defined by reformulation of ARI and ARA ones using bathtub failure intensity. This form is presented like a superposition of two NHPP and Homogeneous Poisson Process (HPP). Moreover, the particularity of this model allows taking account of system state improvement in time course. The maintenance effect is characterized by the change induced on the failure intensity before and after failure during degradation period. To simplify study, the asymptotic properties of failure process are derived. Then, the asymptotic normality of several maintenance efficiency estimators can be proved in the case where the failure process without maintenance is known. Practically, the coverage rate of the asymptotic confidence intervals issued from those estimators is studied.