In this article, the risk process perturbed by diffusion under interest force is considered, the continuity and twice continuous differentiability for Фδ(u,w) are discussed,the Feller expression and the integro-di...In this article, the risk process perturbed by diffusion under interest force is considered, the continuity and twice continuous differentiability for Фδ(u,w) are discussed,the Feller expression and the integro-differential equation satisfied by Фδ (u ,w) are derived. Finally, the decomposition of Фδ(u,w) is discussed, and some properties of each decomposed part of Фδ(u,w) are obtained. The results can be reduced to some ones in Gerber and Landry's,Tsai and Willmot's, and Wang's works by letting parameter δ and (or) a be zero.展开更多
In this paper, it is assumed that an insurer with a jump-diffusion risk process would invest its surplus in a bond market, and the interest structure of the bond market is assumed to follow the Vasicek interest model....In this paper, it is assumed that an insurer with a jump-diffusion risk process would invest its surplus in a bond market, and the interest structure of the bond market is assumed to follow the Vasicek interest model. This paper focuses on the studying of the ruin problems in the above compounded process. In this compounded risk model, ruin may be caused by a claim or oscillation. We decompose the ruin probability for the compounded risk process into two probabilities: the probability that ruin caused by a claim and the probability that ruin caused by oscillation. Integro-differential equations for these ruin probabilities are derived. When the claim sizes are exponentially distributed, the above-mentioned integro-differential equations can be reduced into a three-order partial differential equation.展开更多
In this paper,a class of risk processes perturbed by diffusion are considered. The Lundberg inequalities for the ruin probability are obtained.The size of the Lundberg exponents for different kinds of risk model is co...In this paper,a class of risk processes perturbed by diffusion are considered. The Lundberg inequalities for the ruin probability are obtained.The size of the Lundberg exponents for different kinds of risk model is compared. The numerical illustration for the impact of the parameters on the ruin probability is given.展开更多
This paper studies a Sparre Andersen negative risk sums model in which the distribution of "interclaim" time is that of a sum of n independent exponential random variables. Thus, the Erlang(n) model is a special c...This paper studies a Sparre Andersen negative risk sums model in which the distribution of "interclaim" time is that of a sum of n independent exponential random variables. Thus, the Erlang(n) model is a special case. On this basis the correlated negative risk sums process with the common Erlang process is considered. Integro-differential equations with boundary conditions for ψ(u) are given. For some special cases a closed-form expression for ψ(u) is derived.展开更多
In this note,one kind of insurance risk models with the policies having multiple validity times are investigated.Explicit expressions for the ruin probabilities are obtained by using the martingale method.As a consequ...In this note,one kind of insurance risk models with the policies having multiple validity times are investigated.Explicit expressions for the ruin probabilities are obtained by using the martingale method.As a consequence,the obtained probability serves as an upper bound for the ruin probability of a newly developed entrance processes based risk model.展开更多
We consider a risk model with a premium rate which varies with the level of free reserves. In this model, the occurrence of claims is described by a Cox process with Markov intensity process, and the influence of stoc...We consider a risk model with a premium rate which varies with the level of free reserves. In this model, the occurrence of claims is described by a Cox process with Markov intensity process, and the influence of stochastic factors is considered by adding a diffusion process. The integro-differential equation for the ruin probability is derived by a infinitesimal method. Key words ruin probability - variable premium rate - diffusion process - Markov intensity CLC number O 211.9 Foundation item: Supported by the National Natural Science Foundation of China (10071058, 70273029)展开更多
In this paper, a new risk model is studied in which the rate of premium income is regarded as a random variable, the arrival of insurance policies is a Poisson process and the process of claim occurring is p-thinning ...In this paper, a new risk model is studied in which the rate of premium income is regarded as a random variable, the arrival of insurance policies is a Poisson process and the process of claim occurring is p-thinning process. The integral representations of the survival probability are gotten. The explicit formula of the survival probability on the infinite interval is obtained in the special casc cxponential distribution.The Lundberg inequality and the common formula of the ruin probability are gotten in terms of some techniques from martingale theory.展开更多
In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus...In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus process leaving zero ultimately (simply, the ultimately leaving-time), the surplus immediately prior to ruin, the supreme profits before ruin, the supreme profits and deficit until it leaves zero ultimately and so on. The explicit expressions for their distributions are obtained mainly by the various properties of Levy process, such as the homogeneous strong Markov property and the spatial homogeneity property etc, moveover, the many properties for Brownian motion.展开更多
A Markovian risk process is considered in this paper, which is the generalization of the classical risk model. It is proper that a risk process with large claims is modelled as the Markovian risk model. In such a mode...A Markovian risk process is considered in this paper, which is the generalization of the classical risk model. It is proper that a risk process with large claims is modelled as the Markovian risk model. In such a model, the occurrence of claims is described by a point process {N(t)}t≥0 with N(t) being the number of jumps during the interval (0, t] for a Markov jump process. The ruin probability ψ(u) of a company facing such a risk model is mainly studied. An integral equation satisfied by the ruin probability function ψ(u) is obtained and the bounds for the convergence rate of the ruin probability ψ(u) are given by using a generalized renewal technique developed in the paper.展开更多
We consider a continuous time risk model based on a two state Markov process, in which after an exponentially distributed time, the claim frequency changes to a different level and can change back again in the same wa...We consider a continuous time risk model based on a two state Markov process, in which after an exponentially distributed time, the claim frequency changes to a different level and can change back again in the same way. We derive the Laplace transform for the first passage time to surplus zero from a given negative surplus and for the duration of negative surplus. Closed-form expressions are given in the case of exponential individual claim. Finally, numerical results are provided to show how to estimate the moments of duration of negative surplus.展开更多
In this paper, we consider the finite time ruin probability for the jump-diffusion Poisson process. Under the assurnptions that the claimsizes are subexponentially distributed and that the interest force is constant, ...In this paper, we consider the finite time ruin probability for the jump-diffusion Poisson process. Under the assurnptions that the claimsizes are subexponentially distributed and that the interest force is constant, we obtain an asymptotic formula for the finite-time ruin probability. The results we obtain extends the corresponding results of Kliippelberg and Stadtmüller and Tang.展开更多
In this article, we construct an exponential martingale for the compound Poisson process with latent variable. With the help of this exponential martingale, we provide an asymptotic behavior of the coherent entropic r...In this article, we construct an exponential martingale for the compound Poisson process with latent variable. With the help of this exponential martingale, we provide an asymptotic behavior of the coherent entropic risk measure for the compound Poisson process and a deviation inequality for the ruin probability of the partly shifted risk process.展开更多
Abstract In this paper we consider the risk process that is described by a piecewise deterministic Markov processes (PDMP). We first present the construction of the risk process and then discuss some ruin problems for...Abstract In this paper we consider the risk process that is described by a piecewise deterministic Markov processes (PDMP). We first present the construction of the risk process and then discuss some ruin problems for this new kind of risk model.展开更多
文摘In this article, the risk process perturbed by diffusion under interest force is considered, the continuity and twice continuous differentiability for Фδ(u,w) are discussed,the Feller expression and the integro-differential equation satisfied by Фδ (u ,w) are derived. Finally, the decomposition of Фδ(u,w) is discussed, and some properties of each decomposed part of Фδ(u,w) are obtained. The results can be reduced to some ones in Gerber and Landry's,Tsai and Willmot's, and Wang's works by letting parameter δ and (or) a be zero.
基金The NNSF(10671072,10726075)of Chinathe Doctoral Program Foundation(20060269016)of the Ministry of Education of Chinathe National Basic Research Program(973 Program,2007CB814904)of China.
文摘In this paper, it is assumed that an insurer with a jump-diffusion risk process would invest its surplus in a bond market, and the interest structure of the bond market is assumed to follow the Vasicek interest model. This paper focuses on the studying of the ruin problems in the above compounded process. In this compounded risk model, ruin may be caused by a claim or oscillation. We decompose the ruin probability for the compounded risk process into two probabilities: the probability that ruin caused by a claim and the probability that ruin caused by oscillation. Integro-differential equations for these ruin probabilities are derived. When the claim sizes are exponentially distributed, the above-mentioned integro-differential equations can be reduced into a three-order partial differential equation.
文摘In this paper,a class of risk processes perturbed by diffusion are considered. The Lundberg inequalities for the ruin probability are obtained.The size of the Lundberg exponents for different kinds of risk model is compared. The numerical illustration for the impact of the parameters on the ruin probability is given.
基金Supported by the Foundation of Suzhou Science and Technology University
文摘This paper studies a Sparre Andersen negative risk sums model in which the distribution of "interclaim" time is that of a sum of n independent exponential random variables. Thus, the Erlang(n) model is a special case. On this basis the correlated negative risk sums process with the common Erlang process is considered. Integro-differential equations with boundary conditions for ψ(u) are given. For some special cases a closed-form expression for ψ(u) is derived.
基金Supported by the Grant to Supervisors of Postgraduates with Universities in Gansu Province(1001-10)
文摘In this note,one kind of insurance risk models with the policies having multiple validity times are investigated.Explicit expressions for the ruin probabilities are obtained by using the martingale method.As a consequence,the obtained probability serves as an upper bound for the ruin probability of a newly developed entrance processes based risk model.
文摘We consider a risk model with a premium rate which varies with the level of free reserves. In this model, the occurrence of claims is described by a Cox process with Markov intensity process, and the influence of stochastic factors is considered by adding a diffusion process. The integro-differential equation for the ruin probability is derived by a infinitesimal method. Key words ruin probability - variable premium rate - diffusion process - Markov intensity CLC number O 211.9 Foundation item: Supported by the National Natural Science Foundation of China (10071058, 70273029)
文摘In this paper, a new risk model is studied in which the rate of premium income is regarded as a random variable, the arrival of insurance policies is a Poisson process and the process of claim occurring is p-thinning process. The integral representations of the survival probability are gotten. The explicit formula of the survival probability on the infinite interval is obtained in the special casc cxponential distribution.The Lundberg inequality and the common formula of the ruin probability are gotten in terms of some techniques from martingale theory.
基金Supported by the National Natural Sci-ence Foundations of China (10271062 and 10471119)the Natural Science Foundation of Shandong Province(Y2004A06, Y2008A12, and ZR2009AL015)+1 种基金the Science Foundations of Shandong Provincial Education Department (J07yh05)the Science Foundations of Qufu Normal University (XJ0713, Bsqd200517)
文摘In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus process leaving zero ultimately (simply, the ultimately leaving-time), the surplus immediately prior to ruin, the supreme profits before ruin, the supreme profits and deficit until it leaves zero ultimately and so on. The explicit expressions for their distributions are obtained mainly by the various properties of Levy process, such as the homogeneous strong Markov property and the spatial homogeneity property etc, moveover, the many properties for Brownian motion.
文摘A Markovian risk process is considered in this paper, which is the generalization of the classical risk model. It is proper that a risk process with large claims is modelled as the Markovian risk model. In such a model, the occurrence of claims is described by a point process {N(t)}t≥0 with N(t) being the number of jumps during the interval (0, t] for a Markov jump process. The ruin probability ψ(u) of a company facing such a risk model is mainly studied. An integral equation satisfied by the ruin probability function ψ(u) is obtained and the bounds for the convergence rate of the ruin probability ψ(u) are given by using a generalized renewal technique developed in the paper.
基金Supported in part by the National Natural Science Foundation of China and the Ministry of Education of China
文摘We consider a continuous time risk model based on a two state Markov process, in which after an exponentially distributed time, the claim frequency changes to a different level and can change back again in the same way. We derive the Laplace transform for the first passage time to surplus zero from a given negative surplus and for the duration of negative surplus. Closed-form expressions are given in the case of exponential individual claim. Finally, numerical results are provided to show how to estimate the moments of duration of negative surplus.
基金Supported by the National Natural Science Foundation of China(No.70471071)Philosophy and Social Science Foundation of the Education Anthority of Jiangsu Province(No.04SJB630005)
文摘In this paper, we consider the finite time ruin probability for the jump-diffusion Poisson process. Under the assurnptions that the claimsizes are subexponentially distributed and that the interest force is constant, we obtain an asymptotic formula for the finite-time ruin probability. The results we obtain extends the corresponding results of Kliippelberg and Stadtmüller and Tang.
基金Supported by National Natural Science Foundation of China(11301461)Natural Science Foundation of Jiangsu Province(BK20130435)University Natural Science Foundation of Jiangsu Province(13KJB110031)
文摘In this article, we construct an exponential martingale for the compound Poisson process with latent variable. With the help of this exponential martingale, we provide an asymptotic behavior of the coherent entropic risk measure for the compound Poisson process and a deviation inequality for the ruin probability of the partly shifted risk process.
基金Supported by the National Natural Sciences Foundation of China (No.19971047)Doctoral Foundation of Suzhou University.
文摘Abstract In this paper we consider the risk process that is described by a piecewise deterministic Markov processes (PDMP). We first present the construction of the risk process and then discuss some ruin problems for this new kind of risk model.