In this paper, a study and evaluation of the combination of GPS/GNSS techniques and advanced image processing algorithms for distressed human detection, positioning and tracking, from a fully autonomous Unmanned Aeria...In this paper, a study and evaluation of the combination of GPS/GNSS techniques and advanced image processing algorithms for distressed human detection, positioning and tracking, from a fully autonomous Unmanned Aerial Vehicle (UAV)-based rescue support system, </span><span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> presented. In particular, the issue of human detection both on terrestrial and marine environment under several illumination and background conditions, as the human silhouette in water differs significantly from a terrestrial one</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> is addressed. A robust approach, including an adaptive distressed human detection algorithm running every N input image frames combined with a much faster tracking algorithm, is proposed. Real time or near-real-time distressed human detection rates achieved, using a single, low cost day/night NIR camera mounted onboard a fully autonomous UAV for Search and Rescue (SAR) operations. Moreover, the generation of our own dataset, for the image processing algorithms training is also presented. Details about both hardware and software configuration as well as the assessment of the proposed approach performance are fully discussed. Last, a comparison of the proposed approach to other human detection methods used in the literature is presented.展开更多
On April 3, 39 teachers and students from the Beijing Institute of Technology (BIT)were trapped on the MaoerMountain in Fangshan District,a suburban area in Beijing. Morethan 300 persons,
文摘In this paper, a study and evaluation of the combination of GPS/GNSS techniques and advanced image processing algorithms for distressed human detection, positioning and tracking, from a fully autonomous Unmanned Aerial Vehicle (UAV)-based rescue support system, </span><span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> presented. In particular, the issue of human detection both on terrestrial and marine environment under several illumination and background conditions, as the human silhouette in water differs significantly from a terrestrial one</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> is addressed. A robust approach, including an adaptive distressed human detection algorithm running every N input image frames combined with a much faster tracking algorithm, is proposed. Real time or near-real-time distressed human detection rates achieved, using a single, low cost day/night NIR camera mounted onboard a fully autonomous UAV for Search and Rescue (SAR) operations. Moreover, the generation of our own dataset, for the image processing algorithms training is also presented. Details about both hardware and software configuration as well as the assessment of the proposed approach performance are fully discussed. Last, a comparison of the proposed approach to other human detection methods used in the literature is presented.
文摘On April 3, 39 teachers and students from the Beijing Institute of Technology (BIT)were trapped on the MaoerMountain in Fangshan District,a suburban area in Beijing. Morethan 300 persons,