Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological prote...Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.展开更多
According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research...According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research results achieved in the demonstration stage.It is indicated through analysis that the reservoir sediment deposition and downstream river channel scouring during 8-year impoundment and operation are still within the original forecast,so the original forecasting results are feasible.The further observation and comparison should be conducted because the comparison between the observed data and the original forecast is not so sufficient in time and the prototype observation and related research work should be strengthened in the future.展开更多
This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions...This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions. A factorial experiment was conducted in the study using five soil textures and two cropping systems. The lost soil during the crop season was recovered by a soil-blocking device and the dry weights for the total lost soil and its nutrient components, such as ammonium nitrogen, effective phosphorus, K^+ and organic matter were analyzed. We found that soil texture significantly affected the dry weights of the total lost soil, effective phosphorus, K^+, and organic matter, while sweetpotato cropping systems and interaction between soil texture and sweetpotato cropping system affected the dry weights of the total lost soil, the effective phosphorus and organic matter. Among the five soil textures tested, Da and Huang caused significantly less soil erosion and nutrient loss compared with the other three soil textures; intercropping sweetpotato with corn significantly reduced soil erosion and nutrient loss.展开更多
Jing River is a tributary of the Wei River which is the largest tributary of the Yellow River. Sediments eroded from the upland of the Jing River basin are one of the major contributors of sediment entering the lower ...Jing River is a tributary of the Wei River which is the largest tributary of the Yellow River. Sediments eroded from the upland of the Jing River basin are one of the major contributors of sediment entering the lower Wei River(LWR). The Dongzhuang reservoir is designed to be constructed on the lower Jing River for flood control and water resources regulation, and this may change the sustainable management of the LWR as changed channel deposition by trapping sediments and releasing concentration-limited flow. Its effects on the LWR, especially the deposition distribution, should be analyzed. The steady quasi-two-dimensional dynamic model was adopted to estimate the deposition processes in the LWR. Then, the qualitative effects of the Dongzhuang reservoir on channel deposition were evaluated and compared with historical data, including capacity loss in other reservoirs and measured deposition in the LWR. Analyses indicated that the annual deposition in the LWR will decrease by approximately two-thirds due to the reservoir’s operation. After 15 years of operation, the effects of the Dongzhuang reservoir on the lower channel will decrease gradually. Moreover, its effects on lateral distribution in different sub-reaches are different. After the reservoir’s operation, the floodplain of the Xianyang–Lintong(XY-LT) sub-reach will change its sediment regime from deposition to erosion. For the Lintong–Huaxian(LT-HX) sub-reach, deposition in the main channel will be more serious during the first 30 years of operation. For the Huaxian–Tongguan (HX-TG) sub-reach, the reservoir will have almost no effects on the lateral distribution. All these analyses may benefit the sustainable management of the Wei River and the Yellow River.展开更多
Tracing erosion flux within a single catchment is one of the major targets for the Earth's Critical Zone science. The sedimentary succession in landslide-dammed reservoirs within the Chinese Loess Plateau(CLP) ser...Tracing erosion flux within a single catchment is one of the major targets for the Earth's Critical Zone science. The sedimentary succession in landslide-dammed reservoirs within the Chinese Loess Plateau(CLP) serves as a valuable archive of past erosion history. Deposition couplets and annual freeze–thaw layers were firstly identified for the sedimentary succession of the Jingbian reservoir on the northern CLP with high-resolution XRF core scanning. The deposition couplets in the reservoir since 1963 A.D. were further dated with ^(137) Cs activity. We found consistent one-to-one correspondence between couplet specific sediment yield and storm intensity. The reconstructed soil erosion history highlights the control of storm intensity and frequency on loess erosion on the northern CLP in the past hundreds of years.展开更多
Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam. To initiate management intervention to reduce sediment yields, there is an increasing need for reliable i...Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam. To initiate management intervention to reduce sediment yields, there is an increasing need for reliable information on soil erosion in the Three Gorges Reservoir Region (TGRR). The purpose of this study is to use 137Cs tracing methods to construct a sediment budget for a small agricultural catchment in the TGRR. Cores were taken from a pond and from paddy fields, for laTCs measurements. The results show that the average sedimentation rate in the pond since 1963 is 1.50 g cm-2 yr-1 and the corresponding amount of sediment deposited is 1,553 t. The surface erosion rate for the sloping cultivated lands and the sedimentation rate in the paddy fields were estimated to be 3,770 t km-2 yr-1 and 2,600 t km-2 yr^1 respectively. Based on the estimated erosion and deposition rates, and the area of each unit, the post 197o sediment budget for the catchment has been constructed. A sediment delivery ratio of 0.5 has been estimated for the past 42 years. The data indicate that the sloping cultivated lands are the primary sediment source areas, and that the paddy fields are deposition zones. The typical land use pattern (with the upper parts characterized by sloping cultivated land and the lower parts by paddy fields) plays an important role in reducing sediment yield from agricultural catchments in the TGRR. A 137Cs profile for the sediment deposited in a pond is shownto provide an effective means of estimating the land surface erosion rate in the upstream catchment.展开更多
The Brahmaputra River is one of the largest alluvial rivers in the world characterized by frequent bank erosion leading to channel pattern changes and shifting of bank line. This study is aimed at quantifying the actu...The Brahmaputra River is one of the largest alluvial rivers in the world characterized by frequent bank erosion leading to channel pattern changes and shifting of bank line. This study is aimed at quantifying the actual bank erosion/deposi- tion along the Brahmaputra River within India for a period of eighteen years (1990-2008). The entire course of Brah- maputra River in Assam from upstream of Dibrugarh up to the town Dhubri near Bangladesh border for a stretch of around 620 kms has been studied using an integrated approach of Remote Sensing and Geographical Information Sys- tem (GIS). The channel configuration of the Brahmaputra River has been mapped for the years 1990 and 2008 using IRS 1A LISS-I, and IRS-P6 LISS-III satellite images respectively. The analysis of satellite data has provided not only the information on the channel configuration of the river system on repetitive basis but also has brought out several sig- nificant facts about the changes in river morphology, stable and unstable reaches of the river banks and changes in the main channel. The results provide latest and reliable information on the dynamic fluvio-geomorphology of the Brah- maputra River for designing and implementation of drainage development programmes and erosion control schemes in the north eastern region of the country.展开更多
As there are many heavily sedimentladen rivers in China, with high sediment concentration and a large quantity of sediment load, the sedimentation problems of the reservoirs built on those rivers are so serious that t...As there are many heavily sedimentladen rivers in China, with high sediment concentration and a large quantity of sediment load, the sedimentation problems of the reservoirs built on those rivers are so serious that the amount of sediment deposited in the reservoirs is great and the rate of sedimentation is accelerated. According to the statistics, up to the end of 1981, a total amount of 11.5×109m3 of sediment were accumulated in those reservoirs, i.e. 14.2% of the total designed capacity were lost. The average annual loss in storage capacity reached 2.3 percent, being the highest in the world. Silting of impounding lakes not only has an effect on the benefits of the reservoirs and seriously threatens the life of reservoirs, but also results in many environmental problems which were not fully estimated in the planning of the reservoirs. In this paper, the situation of reservoir deposition in China are described from the following aspects: 1) the characteristics of hydrology and sediment of the rivers; 2) the seriousness of reservoir sedimentation in China; 3) problems caused by reservoir deposition; 4) the methods of minimizing sediment deposition, etc.展开更多
The estimation of underwater features of channel bed surfaces without the use of bathymetric sensors results in very high levels of uncertainty. A revised approach enabling an automatic extraction of the wet areas to ...The estimation of underwater features of channel bed surfaces without the use of bathymetric sensors results in very high levels of uncertainty. A revised approach enabling an automatic extraction of the wet areas to create more accurate and detailed Digital Terrain Models (DTMs) is here presented. LiDAR-derived elevations of dry surfaces, water depths of wetted areas derived from aerial photos and a predictive depth-colour relationship were adopted. This methodology was applied at two different reaches of a northeastern Italian gravel-bed river (Tagliamento) before and after two flood events occurred in November and December 2010. In-channel dGPS survey points were performed taking different depth levels and different colour scales of the river bed. More than 10,473 control points were acquired, 1107 in 2010 and 9366 in 2011 respectively. A regression model that calculates channel depths using the correct intensity of three colour bands (RGB) was implemented. LiDAR and water depth points were merged and interpolated into DTMs which features an average error, for the wet areas, of ±14 cm. The different number of calibration points obtained for 2010 and 2011 showed that the bathymetric error is also sensitive to the number of acquired calibration points. The morphological evolution calculated through a difference of DTMs shows a prevalence of deposition and erosion areas into the wet areas.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFC3204301).
文摘Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.
基金support from the Technology Pillar Program during the"Eleventh Five-year Plan"Period (No.2006BAB05B02No.2006BAB05B03) are acknowledged
文摘According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research results achieved in the demonstration stage.It is indicated through analysis that the reservoir sediment deposition and downstream river channel scouring during 8-year impoundment and operation are still within the original forecast,so the original forecasting results are feasible.The further observation and comparison should be conducted because the comparison between the observed data and the original forecast is not so sufficient in time and the prototype observation and related research work should be strengthened in the future.
文摘This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions. A factorial experiment was conducted in the study using five soil textures and two cropping systems. The lost soil during the crop season was recovered by a soil-blocking device and the dry weights for the total lost soil and its nutrient components, such as ammonium nitrogen, effective phosphorus, K^+ and organic matter were analyzed. We found that soil texture significantly affected the dry weights of the total lost soil, effective phosphorus, K^+, and organic matter, while sweetpotato cropping systems and interaction between soil texture and sweetpotato cropping system affected the dry weights of the total lost soil, the effective phosphorus and organic matter. Among the five soil textures tested, Da and Huang caused significantly less soil erosion and nutrient loss compared with the other three soil textures; intercropping sweetpotato with corn significantly reduced soil erosion and nutrient loss.
基金The research reported in this manuscript is funded by the National Natural Science Foundation of China(Grants No.51979264 and 51479179)。
文摘Jing River is a tributary of the Wei River which is the largest tributary of the Yellow River. Sediments eroded from the upland of the Jing River basin are one of the major contributors of sediment entering the lower Wei River(LWR). The Dongzhuang reservoir is designed to be constructed on the lower Jing River for flood control and water resources regulation, and this may change the sustainable management of the LWR as changed channel deposition by trapping sediments and releasing concentration-limited flow. Its effects on the LWR, especially the deposition distribution, should be analyzed. The steady quasi-two-dimensional dynamic model was adopted to estimate the deposition processes in the LWR. Then, the qualitative effects of the Dongzhuang reservoir on channel deposition were evaluated and compared with historical data, including capacity loss in other reservoirs and measured deposition in the LWR. Analyses indicated that the annual deposition in the LWR will decrease by approximately two-thirds due to the reservoir’s operation. After 15 years of operation, the effects of the Dongzhuang reservoir on the lower channel will decrease gradually. Moreover, its effects on lateral distribution in different sub-reaches are different. After the reservoir’s operation, the floodplain of the Xianyang–Lintong(XY-LT) sub-reach will change its sediment regime from deposition to erosion. For the Lintong–Huaxian(LT-HX) sub-reach, deposition in the main channel will be more serious during the first 30 years of operation. For the Huaxian–Tongguan (HX-TG) sub-reach, the reservoir will have almost no effects on the lateral distribution. All these analyses may benefit the sustainable management of the Wei River and the Yellow River.
基金financially supported by the 973Program(No.2013CB956402)National Natural Science Foundation of China(No.41225015)
文摘Tracing erosion flux within a single catchment is one of the major targets for the Earth's Critical Zone science. The sedimentary succession in landslide-dammed reservoirs within the Chinese Loess Plateau(CLP) serves as a valuable archive of past erosion history. Deposition couplets and annual freeze–thaw layers were firstly identified for the sedimentary succession of the Jingbian reservoir on the northern CLP with high-resolution XRF core scanning. The deposition couplets in the reservoir since 1963 A.D. were further dated with ^(137) Cs activity. We found consistent one-to-one correspondence between couplet specific sediment yield and storm intensity. The reconstructed soil erosion history highlights the control of storm intensity and frequency on loess erosion on the northern CLP in the past hundreds of years.
基金funded by National Key Technology R&D Program (Grant No.2011BAD31B03)the Action Plan for West Development of Chinese Academy of Sciences(Grant No. KZCX2-XB3-09)+1 种基金the National Natural Science Foundation of China (Grant Nos.41201275,41101259,41001163)Western Light-Western Doctor of CAS
文摘Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam. To initiate management intervention to reduce sediment yields, there is an increasing need for reliable information on soil erosion in the Three Gorges Reservoir Region (TGRR). The purpose of this study is to use 137Cs tracing methods to construct a sediment budget for a small agricultural catchment in the TGRR. Cores were taken from a pond and from paddy fields, for laTCs measurements. The results show that the average sedimentation rate in the pond since 1963 is 1.50 g cm-2 yr-1 and the corresponding amount of sediment deposited is 1,553 t. The surface erosion rate for the sloping cultivated lands and the sedimentation rate in the paddy fields were estimated to be 3,770 t km-2 yr-1 and 2,600 t km-2 yr^1 respectively. Based on the estimated erosion and deposition rates, and the area of each unit, the post 197o sediment budget for the catchment has been constructed. A sediment delivery ratio of 0.5 has been estimated for the past 42 years. The data indicate that the sloping cultivated lands are the primary sediment source areas, and that the paddy fields are deposition zones. The typical land use pattern (with the upper parts characterized by sloping cultivated land and the lower parts by paddy fields) plays an important role in reducing sediment yield from agricultural catchments in the TGRR. A 137Cs profile for the sediment deposited in a pond is shownto provide an effective means of estimating the land surface erosion rate in the upstream catchment.
文摘The Brahmaputra River is one of the largest alluvial rivers in the world characterized by frequent bank erosion leading to channel pattern changes and shifting of bank line. This study is aimed at quantifying the actual bank erosion/deposi- tion along the Brahmaputra River within India for a period of eighteen years (1990-2008). The entire course of Brah- maputra River in Assam from upstream of Dibrugarh up to the town Dhubri near Bangladesh border for a stretch of around 620 kms has been studied using an integrated approach of Remote Sensing and Geographical Information Sys- tem (GIS). The channel configuration of the Brahmaputra River has been mapped for the years 1990 and 2008 using IRS 1A LISS-I, and IRS-P6 LISS-III satellite images respectively. The analysis of satellite data has provided not only the information on the channel configuration of the river system on repetitive basis but also has brought out several sig- nificant facts about the changes in river morphology, stable and unstable reaches of the river banks and changes in the main channel. The results provide latest and reliable information on the dynamic fluvio-geomorphology of the Brah- maputra River for designing and implementation of drainage development programmes and erosion control schemes in the north eastern region of the country.
文摘As there are many heavily sedimentladen rivers in China, with high sediment concentration and a large quantity of sediment load, the sedimentation problems of the reservoirs built on those rivers are so serious that the amount of sediment deposited in the reservoirs is great and the rate of sedimentation is accelerated. According to the statistics, up to the end of 1981, a total amount of 11.5×109m3 of sediment were accumulated in those reservoirs, i.e. 14.2% of the total designed capacity were lost. The average annual loss in storage capacity reached 2.3 percent, being the highest in the world. Silting of impounding lakes not only has an effect on the benefits of the reservoirs and seriously threatens the life of reservoirs, but also results in many environmental problems which were not fully estimated in the planning of the reservoirs. In this paper, the situation of reservoir deposition in China are described from the following aspects: 1) the characteristics of hydrology and sediment of the rivers; 2) the seriousness of reservoir sedimentation in China; 3) problems caused by reservoir deposition; 4) the methods of minimizing sediment deposition, etc.
文摘The estimation of underwater features of channel bed surfaces without the use of bathymetric sensors results in very high levels of uncertainty. A revised approach enabling an automatic extraction of the wet areas to create more accurate and detailed Digital Terrain Models (DTMs) is here presented. LiDAR-derived elevations of dry surfaces, water depths of wetted areas derived from aerial photos and a predictive depth-colour relationship were adopted. This methodology was applied at two different reaches of a northeastern Italian gravel-bed river (Tagliamento) before and after two flood events occurred in November and December 2010. In-channel dGPS survey points were performed taking different depth levels and different colour scales of the river bed. More than 10,473 control points were acquired, 1107 in 2010 and 9366 in 2011 respectively. A regression model that calculates channel depths using the correct intensity of three colour bands (RGB) was implemented. LiDAR and water depth points were merged and interpolated into DTMs which features an average error, for the wet areas, of ±14 cm. The different number of calibration points obtained for 2010 and 2011 showed that the bathymetric error is also sensitive to the number of acquired calibration points. The morphological evolution calculated through a difference of DTMs shows a prevalence of deposition and erosion areas into the wet areas.